Al-Sharafi A., Sahin, A. Z., Yilbas, B. S., & Shuja, S. Z. (2016a). Marangoni convection flow and heat transfer characteristics of water-CNT nanofluid droplets.
Numerical Heat Transfer, Part A: Applications,
69, 763-780.
https://doi.org/10.1080/10407782.2015.1090809.
Al-Sharafi, A., Yilbas, B. S., Ali, H., & Sahin, A. Z. (2016b). Internal fluidity of a sessile droplet with the presence of particles on a hydrophobic surface.
Numerical Heat Transfer, Part A: Applications,
70, 1118-1140.
https://doi.org/10.1018/10407782.2016.1230416.
Barmi, M. R., & Meinhart, C. D. (2014). Convective flows in evaporating sessile droplets.
Journal of Physical Chemistry B,
118, 2414-2421.
https://doi.org/10.1021/jp408241f.
Bi, S. S., Cui, J. W., Ma, L. J., Zhao, G. J., & Wu, J. T. (2016). Thermophysical properties of HFE7100 and HFE7500.
Ciesc Journal, 67, 1680-1686.
https://doi.org/10.11949/j.issn.0438-1157.20151505.
Bi, W., Wu, X., & Yeow, E. K. (2012). Unconventional multiple ring structure formation from evaporation-induced self-assembly of polymers.
Langmuir, 28, 11056-11063.
https://doi.org/10.1021/la300697w
Chandramohan, A., Dash, S., Weibel, J. A., Chen, X., & Garimella, S. V. (2016). Marangoni convection in evaporating organic liquid droplets on a nonwetting substrate.
Langmuir, 32, 4729-4735.
https://doi.org/10.1021/acs.langmuir.6b00307.
Chang, S. T., & Velev, O. D. (2006). Evaporation-induced particle microseparations inside droplets floating on a chip.
Langmuir,
22, 1459-1468.
https://doi.org/10.1021/la052695t.
Dai, B. M., Qi, H. F., Liu, S. C., Zhong, Z. F., Li, H. L., Song, M. J., Ma, M. Y., & Sun, Z. L. (2019). Environmental and economical analyses of transcritical CO2 heat pump combined with direct dedicated mechanical subcooling (DMS) for space heating in China.
Energy Conversion and Management,
198, 111317.
https://doi.org/10.1016/j.enconman.2019.01.119
Dai, B. M., Wang, Q., Liu, S. C., Wang, D. B., Yu, L. Q., Li, X. H., & Wang, Y. Y. (2023). Novel configuration of dual-temperature condensation and dual-temperature evaporation high-temperature heat pump system: Carbon footprint, energy consumption, and financial assessment.
Energy Conversion and Management,
292, 117360.
https://doi.org/10.1016/j.enconman.2023.117360
Deegan, R. D., Bakajin, O., Dupont, T., Huber, G., Nagel, S., & Witten, T. (1997). Capillary flow as the cause of ring stains from dried liquid drops.
Nature,
389, 827-829.
https://doi.org/10.1038/39827.
Deegan, R. D., Bakajin, O., Dupont, T., Huber, G., Nagel, S., & Witten, T. (2000). Contact line deposits in an evaporating drop.
Physical Review E,
62, 756-765.
https://doi.org/10.1103/PhysRevE.62.756.
Erbil, H. Y., Mchale, G., & Newton, M. I. (2002). Drop evaporation on solid surfaces: constant contact angle mode.
Langmuir,
18, 2636-2641.
https://doi.org/10.1021/la011470p.
Gao, M., Kong, P., & Zhang, L. X. (2018). Evaporation dynamics of different sizes sessile droplets on hydrophilic and hydrophobic heating surface under constant wall heat fluxes conditions.
International Communications in Heat and Mass Transfer,
93, 93-99.
https://doi.org/10.1016/j.icheatmasstransfer.2018.03.007
Girard, F., Antoni, M., Faure, S., & Steinchen, A. (2006). Evaporation and Marangoni driven convection in small heated water droplets.
Langmuir,
22, 11085-11091.
https://doi.org/10.1021/la061572l.
Girard, F., Antoni, M., & Sefiane, K. (2008). On the effect of Marangoni flow on evaporation rates of heated water drops.
Langmuir,
24, 9207-9210.
https://doi.org/10.1021/la801294x
Guéna, G., Allançon, P., & Cazabat, A. M. (2007). Receding contact angle in the situation of complete wetting: Experimental check of a model used for evaporating droplets.
Colloids and Surfaces A: Physicochemical and Engineering Aspects,
300, 307-314.
https://doi.org/10.1016/j.colsurfa.2007.02.009.
Hu, H., & Larson, R. G. (2005). Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet.
Langmuir,
21, 3972-3980.
https://doi.org/10.1021/la0475270.
Hu, H., & Larson, R. G. (2002). Evaporation of a sessile droplet on a substrate.
The Journal of physiacal chemistry,
106, 1334-1344.
https://doi.org/10.1021/jp0118322.
Hu, H., & Larson, R. G. (2006). Marangoni effect reverses coffee-ring depositions.
Journal of Physical Chemistry B,
110, 7090-7094.
https://doi.org/10.1021/jp0609232.
Huang, Y., Zhang, C., & Meng, S. (2022). Molecular origin of fast evaporation at the solid–water–vapor line in a sessile droplet.
Nanoscale,
14, 2729-2734.
https://doi.org/10.1039/D1NR07479B
Kus, A., Isik, Y., Cakir, M. C., Coşkun, S., & Özdemir, K. (2015). Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting.
Sensors,
15, 1274-1291.
https://doi.org/10.3390/s150101274.
Kita, Y., Askounis, A., Kohno, M., Takata, Y., Kim, J., & Sefiane, K. (2016). Induction of Marangoni convection in pure water drops.
Applied. Physics Letters,
109, 171602.
https://doi.org/10.1063/1.4966542.
Liu, B., Li, Z., Bi, L., Theodorakis, P. E., Liu, Y., Song, J., Chen, A., Zhu Z., & Song, J. (2023). Characteristics of HFE7100 droplets evaporation on substrates with different thermal conductivity.
Thermal Science and Engineering Progress,
40, 101771.
https://doi.org/10.1016/j.tsep.2023.101771
Machrafi, H., Lyulin, Y., Iorio, C. S., Kabov, O., & Dauby, P. C. (2018). Numerical parametric study of the evaporation rate of a liquid under a shear gas flow: Experimental validation and the importance of confinement on the convection cells and the evaporation rate.
International Journal of Heat and Fluid Flow,
702, 8-19.
https://doi.org/10.1016/j.ijheatfluidflow.2018.05.003.
McHale, G., Rowan, S. M., Newton, M. I., & Banerjee, M. K. (1998). Evaporation and the wetting of a low-energy solid surface.
The Journal of Physical Chemistry B,
102, 1964-1967.
https://doi.org/10.1021/jp972552i.
Nerger, B. A., Brun, P. T., & Nelson, C. M. (2020). Marangoni flows drive the alignment of fibrillar cell-laden hydrogels.
Science advances,
6, eaaz7748.
https://doi.org/10.1126/sciadv.aaz7748
Ristenpart, W. D., Kim, P. G., Domingues, C., Wan, J., & Stone, H. A. (2007). Influence of substrate conductivity on circulation reversal in evaporating drops.
Physical Review letters,
99, 234502.
https://doi.org/10.1103/PhysRevLett.99.234502.
Savino, R., Paterna, D., & Favaloro, N. (2002). Buoyancy and Marangoni effects in an evaporating drop.
Journal of Thermophysics and Heat Transfer,
16, 562-574.
https://doi.org/10.2514/2.6716.
Sefiane, K., Moffat, J. R., Matar, O. K., & Craster, R. V. (2008). Self-excited hydrothermal waves in evaporating sessile drops.
Applied Physics Letters,
93, 074103.
https://doi.org/10.1063/1.2969072
Shi, W., Tang, K., Ma, J., Jia, Y., Li, H., & Feng, L. (2017). Marangoni convection instability in a sessile droplet with low volatility on heated substrate.
International Journal of Thermal Sciences,
117, 274-286.
https://doi.org/10.1016/j.ijthermalsci.2017.04.007.
Shi, X., Lin, L., Chen, S., Chao, S., Zhang, W., & Meldrum, D. (2011). Real-time PCR of single bacterial cells on an array of adhering droplets.
Lab on a Chip,
11, 2276-2281.
https://doi.org/10.1039/c1lc20207c.
Song, H., Lee, Y., Jin, S., S., Kim, H. Y., & Yoo, J. Y. (2011). Prediction of sessile drop evaporation considering surface wettability.
Microelectronic Engineering, 88, 3249-3255.
https://doi.org/10.1016/j.cis.2013.08.006
Strizhak, P. A., Volkov, R. S., Misyura, S. Y., Lezhnin, S. I., & Morozov, V. S. (2018). The role of convection in gas and liquid phases at droplet evaporation.
International Journal of Thermal Sciences,
134, 421-439.
https://doi.org/10.1016/j.ijthermalsci.2018.08.031.
Tekin, E., de Gans, B. J., & Schubert, U. S. (2004). Ink jet printing of polymers from single dots to thin film libraries.
Journal of Materials chemistry,
14, 2627-2632.
https://doi.org/10.1039/b407478e.
Tsoumpas, Y., Dehaeck, S., Rednikov, A., & Colinet, P. (2015). Effect of marangoni flows on the shape of thin sessile droplets evaporating into air.
Langmuir,
31, 13334-13340.
https://doi.org/10.1021/acs.langmuir.5b02673.
Wang, H. T., Wang, Z. B., Huang, L. M., Mitra, A., & Yan, Y. S. (2001). Surface patterned porous films by convection-assisted dynamic self-assembly of zeolite nanoparticles.
Langmuir, 17, 2572-2574.
https://doi.org/10.1021/la0102509.
Xu, X., Di, Y., & Yu, H. (2018). Sharp-interface limits of a phase-field model with a generalized Navier slip boundary condition for moving contact lines.
Journal of Fluid Mechanics,
849, 805-833.
https://doi.org/10.1017/jfm.2018.428
Xu, X. F., Luo, J. B., & Guo, D. (2012). Radial-velocity profile along the surface of evaporating liquid droplets.
Soft Matter,
8, 5797-5803.
https://doi.org/10.1039/c2sm25319d.
Xu, Y., Zhang, N., Yang, W. J., & Vest, C. M. (1984). Optical measurement of profile and contact angle of liquids on transparent substrates.
Experiments in Fluids,
2, 142-144.
https://doi.org/10.1007/bf00296430.
Yin, J., Ye, H., Xia, X., Yi, L., & Wang, T. (2023). Methanol–water mixture evaporation-induced self-assembly of ZIF-8 particles.
Chemical Communications,
59, 11508-11511.
https://doi.org/10.1039/D3CC03357K
Zhang, J., Huang, H., & Lu, X. Y. (2019). Pinning–depinning mechanism of the contact line during evaporation of nanodroplets on heated heterogeneous surfaces: A molecular dynamics simulation.
Langmuir,
35, 6356-6366.
https://doi.org/10.1021/acs.langmuir.9b00796
Zhang, M., Liu, Z. L., Ma, G. Y., & Cheng, S. Y. (2009). Numerical simulation and experimental verification of a flat two-phase thermosiphon.
Energy Conversion and Management,
50, 1095-1100.
https://doi.org/10.1016/j.enconman.2008.12.001.