Simulation of Non-Newtonian Blood Flow in Diverging Bifurcated Vessels

Document Type : Regular Article

Authors

1 School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China

2 Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, China

3 School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, China

4 School of Medicine, Nankai University, Tianjin, China

Abstract

Bifurcated vessels represent a typical vascular unit of the cardiovascular system. In this study, the blood flow in symmetric and asymmetric bifurcated vessels are simulated based on computational fluid dynamics method. The blood is modeled as non-Newtonian fluid, and the pulsatile flow velocity is applied on the inlet. The effects of the fluid model, bifurcation angle and symmetry of the geometry of the vessel are investigated. The results show that the wall shear stress (WSS) on the outer wall of daughter branches for the non-Newtonian fluid flow is greater than that for Newtonian fluid flow, and the discrepancy between the flow of two fluid models is obvious at relatively low flow rates. With the bifurcation angle increases, the peak axial velocity of the cross-section of daughter branch decreases, so the WSS increases. For the non-Newtonian fluid flow in the asymmetric bifurcated vessels, more flow passes through the daughter vessel with a lower angle, and the WSS along the outer wall of which is lower. Furthermore, the region with a low time-averaged wall stress (TAWSS) and high oscillating shear index(OSI) distributed on the outer wall of bifurcation vessels are larger for the flow in the vessel with smaller bifurcation angle. In conclusion, the effects of the blood viscosity cannot be neglected at low flow rates and the geometry of the bifurcated vessel plays a key role with regards to the blood flow.

Keywords

Main Subjects


Abugattas, C., Aguirre, A., Castillo, E., & Cruchaga, M. (2020). Numerical study of bifurcation blood flows using three different non-Newtonian constitutive models. Applied Mathematical Modelling, 88, 529-549. https://doi.org/10.1016/j.apm.2020.06.066
Arjmandi Tash, O., & Razavi, S. E. (2012). Numerical investigation of pulsatile blood flow in a bifurcation model with a non-planar branch: the effect of different bifurcation angles and non-planar branch. Bioimpacts, 2(4), 195-205. https://doi.org/10.5681/bi.2012.023
Beier, S., Ormiston, J., Webster, M., Cater, J., Norris, S., Medrano-Gracia, P., Young,A., & Cowan, B. (2016). Impact of bifurcation angle and other anatomical characteristics on blood flow - A computational study of non-stented and stented coronary arteries. Journal of Biomechanics, 49(9), 1570-1582. https://doi.org/10.1016/j.jbiomech.2016.03.038
Bordones, A. D., Leroux, M., Kheyfets, V. O., Wu, Y. A., Chen, C. Y., & Finol, E. A. (2018). Computational fluid dynamics modeling of the human pulmonary arteries with experimental validation. Annals of Biomedical Engineering, 46(9), 1309-1324. https://doi.org/10.1007/s10439-018-2047-1
Caro, C. G., Fitz-Gerald, J. M., & Schroter, R. C. (1969). Arterial wall shear and distribution of early atheroma in man. Nature223(5211), 1159-1161. https://doi.org/10.1038/2231159a0
Caballero, A. D., & Laín, S. (2014). Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta. Computer Methods in Biomechanics and Biomedical Engineering, 18(11), 1200-1216. https://doi.org/10.1080/10255842.2014.887698
Chaichana, T., Sun, Z., & Jewkes, J. (2011). Computation of hemodynamics in the left coronary artery with variable angulations. Journal of Biomechanics, 44(10), 1869-1878. https://doi.org/10.1016/j.jbiomech.2011.04.033
Chen, J., & Lu, X. Y. (2004). Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch. Journal of Biomechanics, 37(12), 1899-1911. https://doi.org/10.1016/j.jbiomech.2004.02.030
Chen, J., & Lu, X. Y. (2006). Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch. Journal of Biomechanics, 39(5), 818-832. https://doi.org/10.1016/j.jbiomech.2005.02.003
Chen, Y., Yang, X. L., Iskander, A. J., & Wang, P. (2020). On the flow characteristics in different carotid arteries. Physics of Fluids, 32(10), 17. https://doi.org/10.1063/5.0022092
Cox, C., Najjari, M. R., & Plesniak, M. W. (2019). Three-dimensional vortical structures and wall shear stress in a curved artery model. Physics of Fluids, 31(12). https://doi.org/10.1063/1.5124876
Freund, J. B. (2014). Numerical simulation of flowing blood cells. Annual Review of Fluid Mechanics, 46(1), 67-95. https://doi.org/10.1146/annurev-fluid-010313-141349
Fry, D. L. (2002). Arterial intimal-medial permeability and coevolving structural responses to defined shear-stress exposures. American Journal of Physiology Heart & Circulatory Physiology, 283(6), H2341-2355. https://doi.org/10.1152/ajpheart.00219.2001
Gijsen, F. J., Allanic, E., van de Vosse, F. N., & Janssen, J. D. (1999). The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 degrees curved tube. Journal of Biomechanics, 32(7), 705-713. https://doi.org/10.1016/s0021-9290(99)00014-7
Harris, J., Paul, A., & Ghosh, B. (2023). Numerical simulation of blood flow in aortoiliac bifurcation with increasing degree of stenosis. Journal of Applied Fluid Mechanics, 16(8), 1601-1614. https://doi.org/10.47176/jafm.16.08.1552
Isoda, H., Ohkura, Y., Kosugi, T., Hirano, M., Takeda, H., Hiramatsu, H., Yamashita, S., Takehara, Y., Alley, M., Bammer, R., Pelc, Norbert., Namba, H., & Sakahara, H. (2010). In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI. Neuroradiology, 52(10), 921-928. https://doi.org/10.1007/s00234-009-0635-3
Johnston, B. M., Johnston, P. R., Corney, S., & Kilpatrick, D. (2004). Non-Newtonian blood flow in human right coronary arteries: steady state simulations. Journal of Biomechanics, 37(5), 709-720. https://doi.org/10.1016/j.jbiomech.2003.09.016
Kamangar, S. (2022). Influence of multi stenosis on hemodynamic parameters in an idealized coronary artery model. Journal of Applied Fluid Mechanics, 15(1), 15-23. https://doi.org/10.47176/jafm.15.01.32597
Kannojiya, V., Das, A. K., & Das, P. K. (2021). Simulation of blood as fluid: a review from rheological aspects. IEEE Reviews in Biomedical Engineering, 14, 327-341. https://doi.org/10.1109/RBME.2020.3011182
Kelly, N. S., Gill, H. S., Cookson, A. N., & Fraser, K. H. (2020). Influence of shear-thinning blood rheology on the laminar-turbulent transition over a backward facing step. Fluids, 5(2). https://doi.org/10.3390/fluids5020057
Kucharska-Newton, A., Griswold, M., Yao, Z. H., Foraker, R., Rose, K., Rosamond, W., Wagenknecht, L., Koton, S., Pompeii, L., &. Windham, B. G. (2017). Cardiovascular disease and patterns of change in functional status over 15 years: findings from the atherosclerosis risk in communities (ARIC) study. Journal of the American Heart Association, 6(3). https://doi.org/10.1161/JAHA.116.004144
Libby, P., Ridker, P. M., & Hansson, G. K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature, 473(7347), 317-325. https://doi.org/10.1038/nature10146
Liu, G., Wu, J., Ghista, D. N., Huang, W., & Wong, K. K. (2015). Hemodynamic characterization of transient blood flow in right coronary arteries with varying curvature and side-branch bifurcation angles. Computers in Biology and Medicine, 64, 117-126. https://doi.org/10.1016/j.compbiomed.2015.06.009
Nagargoje, M., & Gupta, R. (2020). Effect of asymmetry on the flow behavior in an idealized arterial bifurcation. Computer Methods in Biomechanics and Biomedical Engineering, 23(6), 232-247. https://doi.org/10.1080/10255842.2019.1711068
Nagargoje, M. S., Mishra, D. K., & Gupta, R. (2021). Pulsatile flow dynamics in symmetric and asymmetric bifurcating vessels. Physics of Fluids, 33(7), 22. https://doi.org/Artn 07190410.1063/5.0056414
Pinto, S. I., & Campos, J. B. (2016). Numerical study of wall shear stress-based descriptors in the human left coronary artery. Computer Methods in Biomechanics and Biomedical Engineering, 19(13), 1443-1455. https://doi.org/10.1080/10255842.2016.1149575
Soares, A. A., Carvalho, F. A., & Leite, A. (2021). Wall shear stress-based hemodynamic descriptors in the abdominal aorta bifurcation: analysis of a case study. Journal of Applied Fluid Mechanics, 14(6), 1657-1668. https://doi.org/10.47176/jafm.14.06.32319
Spanos, K., Petrocheilou, G., Karathanos, C., Labropoulos, N., Mikhailidis, D., & Giannoukas, A. (2017). Carotid bifurcation geometry and atherosclerosis. Angiology, 68(9), 757-764. https://doi.org/10.1177/0003319716678741
Weddell, J. C., Kwack, J., Imoukhuede, P. I., & Masud, A. (2015). Hemodynamic analysis in an idealized artery tree: differences in wall shear stress between Newtonian and non-Newtonian blood models. PLoS One, 10(4), e0124575. https://doi.org/10.1371/journal.pone.0124575
Xiao, L., Chu, J., Lin, C., Zhang, K., Chen, S., & Yang, L. (2023). Simulation of a tumor cell flowing through a symmetric bifurcated microvessel. Biomechanics and Modeling in Mechanobiology, 22(1), 297-308. https://doi.org/10.1007/s10237-022-01649-3
Xiao, L., Zhang, K., Zhao, J., Chen, S., & Liu, Y. (2021). Viscosity measurement and simulation of microbubble wetting on flat surfaces with many-body dissipative particle dynamics model. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 608. https://doi.org/10.1016/j.colsurfa.2020.125559
Xiao, L. L., Lin, C. S., Chen, S., Liu, Y., Fu, B. M., & Yan, W. W. (2020a). Effects of red blood cell aggregation on the blood flow in a symmetrical stenosed microvessel. Biomechanics and Modeling in Mechanobiology, 19(1), 159-171. https://doi.org/10.1007/s10237-019-01202-9
Xiao, L. L., Song, X. J., & Chen, S. (2020b). Motion of a tumour cell under the blood flow at low Reynolds number in a curved microvessel. Molecular Simulation, 47(1), 1-9. https://doi.org/10.1080/08927022.2020.1856377
Zhang, D., & Dou, K. (2015). Coronary bifurcation intervention: what role do bifurcation angles play? Journal of Interventional Cardiology, 28(3), 236-248. https://doi.org/10.1111/joic.12203
Zhao, S. Z., Xu, X. Y., Hughes, A. D., Thom, S. A., Stanton, A. V., Ariff, B., & Long, Q. (2000). Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. Journal of Biomechanics, 33(8), 975-984. https://doi.org/10.1016/s0021-9290(00)00043-9