Abugattas, C., Aguirre, A., Castillo, E., & Cruchaga, M. (2020). Numerical study of bifurcation blood flows using three different non-Newtonian constitutive models.
Applied Mathematical Modelling, 88, 529-549.
https://doi.org/10.1016/j.apm.2020.06.066
Arjmandi Tash, O., & Razavi, S. E. (2012). Numerical investigation of pulsatile blood flow in a bifurcation model with a non-planar branch: the effect of different bifurcation angles and non-planar branch.
Bioimpacts, 2(4), 195-205.
https://doi.org/10.5681/bi.2012.023
Beier, S., Ormiston, J., Webster, M., Cater, J., Norris, S., Medrano-Gracia, P., Young,A., & Cowan, B. (2016). Impact of bifurcation angle and other anatomical characteristics on blood flow - A computational study of non-stented and stented coronary arteries.
Journal of Biomechanics, 49(9), 1570-1582.
https://doi.org/10.1016/j.jbiomech.2016.03.038
Bordones, A. D., Leroux, M., Kheyfets, V. O., Wu, Y. A., Chen, C. Y., & Finol, E. A. (2018). Computational fluid dynamics modeling of the human pulmonary arteries with experimental validation.
Annals of Biomedical Engineering, 46(9), 1309-1324.
https://doi.org/10.1007/s10439-018-2047-1
Caro, C. G., Fitz-Gerald, J. M., & Schroter, R. C. (1969). Arterial wall shear and distribution of early atheroma in man.
Nature,
223(5211), 1159-1161.
https://doi.org/10.1038/2231159a0
Caballero, A. D., & Laín, S. (2014). Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta.
Computer Methods in Biomechanics and Biomedical Engineering, 18(11), 1200-1216.
https://doi.org/10.1080/10255842.2014.887698
Chen, J., & Lu, X. Y. (2006). Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
Journal of Biomechanics, 39(5), 818-832.
https://doi.org/10.1016/j.jbiomech.2005.02.003
Chen, Y., Yang, X. L., Iskander, A. J., & Wang, P. (2020). On the flow characteristics in different carotid arteries.
Physics of Fluids, 32(10), 17.
https://doi.org/10.1063/5.0022092
Cox, C., Najjari, M. R., & Plesniak, M. W. (2019). Three-dimensional vortical structures and wall shear stress in a curved artery model.
Physics of Fluids, 31(12).
https://doi.org/10.1063/1.5124876
Fry, D. L. (2002). Arterial intimal-medial permeability and coevolving structural responses to defined shear-stress exposures.
American Journal of Physiology Heart & Circulatory Physiology, 283(6), H2341-2355.
https://doi.org/10.1152/ajpheart.00219.2001
Gijsen, F. J., Allanic, E., van de Vosse, F. N., & Janssen, J. D. (1999). The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 degrees curved tube.
Journal of Biomechanics, 32(7), 705-713.
https://doi.org/10.1016/s0021-9290(99)00014-7
Harris, J., Paul, A., & Ghosh, B. (2023). Numerical simulation of blood flow in aortoiliac bifurcation with increasing degree of stenosis.
Journal of Applied Fluid Mechanics, 16(8), 1601-1614.
https://doi.org/10.47176/jafm.16.08.1552
Isoda, H., Ohkura, Y., Kosugi, T., Hirano, M., Takeda, H., Hiramatsu, H., Yamashita, S., Takehara, Y., Alley, M., Bammer, R., Pelc, Norbert., Namba, H., & Sakahara, H. (2010). In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI.
Neuroradiology, 52(10), 921-928.
https://doi.org/10.1007/s00234-009-0635-3
Johnston, B. M., Johnston, P. R., Corney, S., & Kilpatrick, D. (2004). Non-Newtonian blood flow in human right coronary arteries: steady state simulations.
Journal of Biomechanics, 37(5), 709-720.
https://doi.org/10.1016/j.jbiomech.2003.09.016
Kamangar, S. (2022). Influence of multi stenosis on hemodynamic parameters in an idealized coronary artery model.
Journal of Applied Fluid Mechanics, 15(1), 15-23.
https://doi.org/10.47176/jafm.15.01.32597
Kannojiya, V., Das, A. K., & Das, P. K. (2021). Simulation of blood as fluid: a review from rheological aspects.
IEEE Reviews in Biomedical Engineering, 14, 327-341.
https://doi.org/10.1109/RBME.2020.3011182
Kelly, N. S., Gill, H. S., Cookson, A. N., & Fraser, K. H. (2020). Influence of shear-thinning blood rheology on the laminar-turbulent transition over a backward facing step.
Fluids, 5(2).
https://doi.org/10.3390/fluids5020057
Kucharska-Newton, A., Griswold, M., Yao, Z. H., Foraker, R., Rose, K., Rosamond, W., Wagenknecht, L., Koton, S., Pompeii, L., &. Windham, B. G. (2017). Cardiovascular disease and patterns of change in functional status over 15 years: findings from the atherosclerosis risk in communities (ARIC) study.
Journal of the American Heart Association, 6(3).
https://doi.org/10.1161/JAHA.116.004144
Libby, P., Ridker, P. M., & Hansson, G. K. (2011). Progress and challenges in translating the biology of atherosclerosis.
Nature, 473(7347), 317-325.
https://doi.org/10.1038/nature10146
Liu, G., Wu, J., Ghista, D. N., Huang, W., & Wong, K. K. (2015). Hemodynamic characterization of transient blood flow in right coronary arteries with varying curvature and side-branch bifurcation angles.
Computers in Biology and Medicine, 64, 117-126.
https://doi.org/10.1016/j.compbiomed.2015.06.009
Nagargoje, M., & Gupta, R. (2020). Effect of asymmetry on the flow behavior in an idealized arterial bifurcation.
Computer Methods in Biomechanics and Biomedical Engineering, 23(6), 232-247.
https://doi.org/10.1080/10255842.2019.1711068
Pinto, S. I., & Campos, J. B. (2016). Numerical study of wall shear stress-based descriptors in the human left coronary artery.
Computer Methods in Biomechanics and Biomedical Engineering, 19(13), 1443-1455.
https://doi.org/10.1080/10255842.2016.1149575
Soares, A. A., Carvalho, F. A., & Leite, A. (2021). Wall shear stress-based hemodynamic descriptors in the abdominal aorta bifurcation: analysis of a case study.
Journal of Applied Fluid Mechanics, 14(6), 1657-1668.
https://doi.org/10.47176/jafm.14.06.32319
Spanos, K., Petrocheilou, G., Karathanos, C., Labropoulos, N., Mikhailidis, D., & Giannoukas, A. (2017). Carotid bifurcation geometry and atherosclerosis.
Angiology, 68(9), 757-764.
https://doi.org/10.1177/0003319716678741
Weddell, J. C., Kwack, J., Imoukhuede, P. I., & Masud, A. (2015). Hemodynamic analysis in an idealized artery tree: differences in wall shear stress between Newtonian and non-Newtonian blood models.
PLoS One, 10(4), e0124575.
https://doi.org/10.1371/journal.pone.0124575
Xiao, L., Chu, J., Lin, C., Zhang, K., Chen, S., & Yang, L. (2023). Simulation of a tumor cell flowing through a symmetric bifurcated microvessel.
Biomechanics and Modeling in Mechanobiology, 22(1), 297-308.
https://doi.org/10.1007/s10237-022-01649-3
Xiao, L., Zhang, K., Zhao, J., Chen, S., & Liu, Y. (2021). Viscosity measurement and simulation of microbubble wetting on flat surfaces with many-body dissipative particle dynamics model.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 608.
https://doi.org/10.1016/j.colsurfa.2020.125559
Xiao, L. L., Lin, C. S., Chen, S., Liu, Y., Fu, B. M., & Yan, W. W. (2020a). Effects of red blood cell aggregation on the blood flow in a symmetrical stenosed microvessel.
Biomechanics and Modeling in Mechanobiology, 19(1), 159-171.
https://doi.org/10.1007/s10237-019-01202-9
Zhang, D., & Dou, K. (2015). Coronary bifurcation intervention: what role do bifurcation angles play?
Journal of Interventional Cardiology, 28(3), 236-248.
https://doi.org/10.1111/joic.12203
Zhao, S. Z., Xu, X. Y., Hughes, A. D., Thom, S. A., Stanton, A. V., Ariff, B., & Long, Q. (2000). Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation.
Journal of Biomechanics, 33(8), 975-984.
https://doi.org/10.1016/s0021-9290(00)00043-9