Brohez, S., Delvosalle, C., & Marlair, G. (2004). A two-thermocouples probe for radiation corrections of measured temperatures in compartment fires.
Fire Safety Journal, 39(5), 399-411.
https://doi.org/10.1016/j.firesaf.2004.03.002
Dekhatawala, A., Bhale, P. V., & Shah, R. (2023). Experimental investigation on effect of height and pore density of porous medium on flame and emission characteristics of inverse diffusion combustor. Thermal Engineering, (In press).
Dobrego, K. V., Kozlov, I. M., Zhdanok, S. A., & Gnesdilov, N. N. (2001). Modeling of diffusion filtration combustion radiative burner.
International Journal of Heat and Mass Transfer,
44(17), 3265–3272.
https://doi.org/10.1016/S0017-9310(00)00343-4
Durst, F., & Weclas, M. (2001). A new type of internal combustion engine based on the porous-medium combustion technique.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,
215(1), 63–81.
https://doi.org/10.1243/0954407011525467
Endo Kokubun, M. A., Fachini, F. F., & Matalon, M. (2017). Stabilization and extinction of diffusion flames in an inert porous medium.
Proceedings of the Combustion Institute,
36(1), 1485–1493.
https://doi.org/10.1016/j.proci.2016.07.004
Hayashi, T. C., Malico, I., & Pereira, J. C. F. (2004). Three-dimensional modelling of a two-layer porous burner for household applications.
Computers and Structures,
82(17–19), 1543–1550.
https://doi.org/10.1016/j.compstruc.2004.03.050
Huang, Y., Chao, C. Y. H., & Cheng, P. (2002). Effects of preheating and operation conditions on combustion in a porous medium.
International Journal of Heat and Mass Transfer,
45, 4315–4324.
https://doi.org/10.1016/S0017-9310(02)00137-0
Ikeda, Y., Kojima, J., & Hashimoto, H. (2002). Local chemiluminescence spectra measurements in a high-pressure laminar methane/air premixed flame.
Proceedings of the Combustion Institute, 29(2), 1495-1501.
https://doi.org/10.1016/S1540-7489(02)80183-3
Kamiuto, K., & Ogawa, T. (2012). Diffusion flames in cylindrical packed beds.
Journal of Thermophysics and Heat Transfer, 11(4), 585–587.
https://doi.org/10.2514/2.6284
Khaleghi, M., Hosseini, S. E., Wahid, M. A., & Mohammed, H. A. (2015). The effects of air preheating and fuel/air inlet diameter on the characteristics of vortex flame.
Journal of Energy, 2015.
https://doi.org/10.1155/2015/397219
Li, H., Shi, J., Mao, M., & Liu, Y. (2019). Experimental and numerical studies on combustion characteristics of N
2-diluted CH
4 and O
2 diffusion combustion in a packed bed.
Royal Society open science,
6(9), 190492.
https://doi.org/10.1098/rsos.190492
Lin, B., Dai, H., Wang, C., Li, Q., Wang, K., & Zheng, Y. (2014). Combustion characteristics of low concentration coal mine methane in divergent porous media burner.
International Journal of Mining Science and Technology,
24(5), 671–676.
https://doi.org/10.1016/j.ijmst.2014.03.027
Liu, H., Wu, D., Xie, M., Liu, H., & Xu, Z. (2019). Experimental and numerical study on the lean premixed filtration combustion of propane/air in porous medium.
Applied Thermal Engineering,
150, 445–455.
https://doi.org/10.1016/j.applthermaleng.2018.12.155
Miao, J., Leung, C. W., Cheung, C. S., Huang, Z. H., & Zhen, H. S. (2016). Effect of hydrogen addition on overall pollutant emissions of inverse diffusion flame.
Energy,
104, 284-294.
https://doi.org/10.1016/j.energy.2016.03.114
Ning, D., Liu, Y., Xiang, Y., & Fan, A. (2017). Experimental investigation on non-premixed methane/air combustion in Y-shaped meso-scale combustors with/without fibrous porous media.
Energy Conversion and Management,
138, 22–29.
https://doi.org/10.1016/j.enconman.2017.01.065
Peng, Q., Jiaqiang, E., Chen, J., Zuo, W., Zhao, X., & Zhang, Z. (2018). Investigation on the effects of wall thickness and porous media on the thermal performance of a non-premixed hydrogen fueled cylindrical micro combustor.
Energy Conversion and Management,
155, 276–286.
https://doi.org/10.1016/j.enconman.2017.10.095
Qiu, K., & Hayden, A. C. S. (2007). Thermophotovoltaic power generation systems using natural gas-fired radiant burners.
Solar Energy Materials and Solar Cells,
91(7), 588–596.
https://doi.org/10.1016/j.solmat.2006.11.011
Sahraoui, M., & Kavtany, M. (1994). Direct simulation vs volume-averaged treatment of adiabatic, premixed flame in a porous medium.
International Journal of Heat and Mass Transfer,
37(18), 2817-2834.
https://doi.org/10.1016/0017-9310(94)90338-7
Sathe, S. B., Peck, R. E., & Tong, T. W. (1990). A numerical analysis of heat transfer and combustion in porous radiant burners.
International Journal of Heat and Mass Transfer,
33(6), 1331–1338.
https://doi.org/10.1016/0017-9310(90)90262-S
Shi, J., Liu, Y., Liu, Y., Mao, M., Xia, Y., Ma, R., & Xu, Y. (2018). An experimental study on coflow diffusion combustion in a pellet-packed bed with different bed lengths.
Royal Society Open Science,
5(8).
https://doi.org/10.1098/rsos.172027
Shi, J., Liu, Y., Mao, M., Lv, J., Wang, Y., & He, F. (2019). Experimental and numerical studies on the effect of packed bed length on CO and NOx emissions in a plane-parallel porous combustor.
Energy,
181, 250–263.
https://doi.org/10.1016/j.energy.2019.05.141
Suo, S., Shen, Z., Shi, J., Chen, Z., Zhang, Y., Jiang, L., Zhang, Y., Qi, H., & Xie, M. (2022). Wake flow and flame characteristics in the porous media with different surface combustion states: An experimental study.
Chemical Engineering Science,
257, 117677.
https://doi.org/10.1016/J.CES.2022.117677
Wang, H., Wei, C., Zhao, P., & Ye, T. (2014). Experimental study on temperature variation in a porous inert media burner for premixed methane air combustion.
Energy,
72, 195–200.
https://doi.org/10.1016/j.energy.2014.05.024
Wu, D., Liu, H., Xie, M., Liu, H., & Sun, W. (2012). Experimental investigation on low velocity filtration combustion in porous packed bed using gaseous and liquid fuels.
Experimental Thermal and Fluid Science,
36, 169–177.
https://doi.org/10.1016/j.expthermflusci.2011.09.011
Zhang, J. C., Cheng, L. M., Zheng, C. H., Luo, Z. Y., & Ni, M. J. (2013). Development of non-premixed porous inserted regenerative thermal oxidizer.
Journal of Zhejiang University: Science A,
14(9), 671–678.
https://doi.org/10.1631/JZUS.A1300198/FIGURES/8
Zhen, H. S., Choy, Y. S., Leung, C. W., & Cheung, C. S. (2011). Effects of nozzle length on flame and emission behaviors of multi-fuel-jet inverse diffusion flame burner.
Applied Energy, 88(9), 2917-2924.
https://doi.org/10.1016/j.apenergy.2011.02.040