Numerical Investigation of the Impingement Cooling Characteristics of Sweeping Jets with Phase Change

Document Type : Regular Article

Authors

1 Energy Conservation Research Group (ECRG), College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China

2 State Key Laboratory of Long-life High-Temperature Materials, Dongfang Electric Group Dongfang Turbine Co., Ltd, 666 Jinshajiang West Road, Deyang 618000, China

Abstract

This study investigates the cooling features of sweeping jets with phase changes, providing insights into how parameters affect heat transfer. The study aims to improve heat transfer by investigating the cooling effects of a sweeping jet impinging on a concave wall. The Eulerian-Lagrangian particle tracking method was used to examine the impact of Reynolds number, droplet diameter, mist capacity, and impingement distance on heat transfer properties during the sweeping jet impingement cooling. Increasing the Reynolds number from 20,000 to 35,200 results in a 7.1% and 3.3% decrease in average temperature at the axial centerline of the impingement wall, attributed to the cooling effect from droplet phase change. Decreasing droplet diameter from 20 µm to 10 µm reduces temperature amplitude by 11K. At 5% and 7.5% mist ratios, the cooling performance is similar to that of dry air. However, a mist injection of 10% significantly amplifies the cooling effect by 18.8%, providing a more efficient cooling experience. This investigation provides essential perspectives on impingement cooling, offering insights into the impact of various parameters on heat transfer enhancement.

Keywords

Main Subjects


Agricola, L., Hossain, M. A., Ameri, A., Gregory, J. W., & Bons, J. P. (2018). Turbine vane leading edge impingement cooling with a sweeping jet. ASME Turbo Expo: Turbomachinery Technical Conference and Exposition. https://doi.org/https://doi.org/10.1115/GT2018-77073
AIAA. (2000). Miniature fluidic oscillators for flow and noise control - transitioning from macro to micro fluidics. Fluids 2000 Conference And Exhibit. https://doi.org/https://doi.org/10.2514/6.2000-2554.
Ansys, Inc. (2020). ANSYS CFX-Solver Theory Guide Release 2020-R1. http://www.ansys.com
Camci, C., & Herr, F. (2002). Forced convection heat transfer enhancement using a self-oscillating impinging planar jet. Journal of Heat Transfer Transaction ASME, 124 (4), 770–782. https://doi.org/https://doi.org/10.1115/1.1471521
Cerretelli, C., & Kirtley, K. (2009). Boundary layer separation control with fluidic oscillators. https://doi.org/10.1115/GT2006-90738
Chu, Y. M., Nazeer, M., Khan, M. I., Ali, W., Zafar, Z., Kadry, S., & Abdelmalek, Z. (2020). Entropy analysis in the Rabinowitsch fluid model through inclined Wavy Channel: Constant and variable properties. International Communications in Heat and Mass Transfer119, 104980. https://doi.org/10.1016/j.icheatmasstransfer.2020.104980
Hossain, M. A., Agricola, L., Ameri, A., Gregory, J. W., & Bons, J. P. (2018a). Effects of curvature on the performance of sweeping jet impingement heat transfer. J In 2018 AIAA aerospace sciences meeting (p. 0243). https://doi.org/10.2514/6.2018-0243
Hossain, M. A., Prenter, R., Lundgreen, R. K., Ameri, A., Gregory, J. W., & Bons, J. P. (2018b). Experimental and numerical investigation of sweeping jet film cooling. Journal of Turbomachinery, 140(3), 031009.  https://doi.org/10.1115/1.4038690
Khan, M. I., & Alzahrani, F. (2020). Transportation of heat through Cattaneo-Christov heat flux model in non-Newtonian fluid subject to internal resistance of particles. Applied Mathematics and Mechanics41, 1157-1166. https://doi.org/10.1007/s10483-020-2641-9
Khan, M. I., Qayyum, S., Kadry, S., Khan, W. A., & Abbas, S. Z. (2020). Theoretical investigations of entropy optimization in electro-magneto nonlinear mixed convective second order slip flow. Journal of Magnetics25(1), 8-14. https://doi.org/10.4283/JMAG.2020.25.1.008
Usman, Khan, M. I., Shah, F., Khan, S. U., Ghaffari, A., & Chu, Y. M. (2022). Heat and mass transfer analysis for bioconvective flow of Eyring Powell nanofluid over a Riga surface with nonlinear thermal features. Numerical Methods for Partial Differential Equations, 38(4), 777-793. https://doi.org/10.1002/num.22696
Kim, S. H., Kim, H. D., & Kim, K. C. (2019). Measurement of two-dimensional heat transfer and flow characteristics of an impinging sweeping jet. International Journal of Heat and Mass Transfer, 136, 415–426. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.021
Li, X., Gaddis, J. L., & Wang, T. (2001). Mist/steam heat transfer in confined slot jet impingement. Journal of Turbomachinery, 123 (1), 161–167. https://doi.org/https://doi.org/10.1115/1.1331536
Li, X., Gaddis, J. L., & Wang, T. (2003). Mist/steam cooling by a row of impinging jets. International Journal of Heat and Mass Transfer, 46 (12), 2279–2290. https://doi.org/https://doi.org/10.1016/S0017-9310(02)00521-5
Lundgreen, R. K., Hossain, M. A., Prenter, R., Bons, J. P., Gregory, J., & Ameri, A. (2017). Impingement heat transfer characteristics of a sweeping jet. 55th Aiaa Aerospace Sciences Meeting. https://doi.org/ 10.2514/6.2017-1535.
Menter, F. (1993, July). Zonal two equation kw turbulence models for aerodynamic flows. 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference (p. 2906). https://doi.org/10.2514/6.1993-2906
Park, T., Kara, K., & Kim, D. (2018). Flow structure and heat transfer of a sweeping jet impinging on a flat wall. International Journal of Heat and Mass Transfer, 124, 920–928. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.016
Peng, J., Hong-yan, H., Guo-tai, F., & Zhong-qi, W. (2009). Numerically simulating mist/steam impingement cooling with phase change. Journal of Harbin Engineering University, 30 (10), 1097–1101. https://doi.org/10.3969/j.issn.1006-7043.2009.10.003
Schlichting, H., & Gersten, K. (1979). Boundary-layer theory. Springer. https://doi.org/https://doi.org/10.1007/978-3-662-52919-5
Song, Y. Q., Khan, M. I., Qayyum, S., Gowda, R. P., Kumar, R. N., Prasannakumara, B. C., ... & Chu, Y. M. (2021). Physical impact of thermo-diffusion and diffusion-thermo on Marangoni convective flow of hybrid nanofluid (MnZiFe2O4–NiZnFe2O4–H2O) with nonlinear heat source/sink and radiative heat flux. Modern Physics Letters B35(22), 2141006. https://doi.org/10.1142/S0217984921410062
Tan, X. M., Li, Y. F., & Zhang, J. Z. (2013). Numerical simulation of mist/air cooling in a single slot jet impingement. Journal of Aerospace Power, 28 (1), 129–135. https://api.semanticscholar.org/CorpusID:138265390
Thurman, D., Poinsatte, P., Ameri, A., Culley, D., Raghu, S., & Shyam, V. (2015). Investigation of spiral and sweeping holes. ASME Turbo Expo: Turbine Technical Conference and Exposition. https://doi.org/ 10.1115/1.4032839
Wang, T., & Dhanasekaran, T. S. (2010). Calibration of a computational model to predict mist/steam impinging jets cooling with an application to gas turbine blades. Journal of Heat Transfer, 132 (12),  https://doi.org/https://doi.org/10.1115/1.4002394
Wang, T., Gaddis, J. L., & Li, X. C. (2005). Mist/steam heat transfer of multiple rows of impinging jets. International Journal of Heat and Mass Transfer, 48 (25-26), 5179–5191. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.016
Weigand, B., & Spring, S. (2011). Multiple jet impingement- a review. Heat Transfer Research, 42 (2), 101–142. https://doi.org/ 10.1615/HeatTransRes.v42.i2.30
Zhou, J., Wang, X., Li, J., & Lu, H. (2017). Cfd analysis of mist/air film cooling on a flat plate with different hole types. Numerical Heat Transfer, Part A: Applications, 71 (11), 1123–1140. https://doi.org/https://doi.org/10.1080/10407782.2017.1337994
Zhou, W. W., Yuan, L., Liu, Y. Z., Peng, D., & Wen, X. (2019). Heat transfer of a sweeping jet impinging at narrow spacings. Experimental Thermal and Fluid Science, 103, 89–98. https://doi.org/https://doi.org/10.1016/j.expthermflusci.2019.01.007