Cao, Y., & Tamura, T. (2015). Numerical investigations into effects of three-dimensional wake patterns on unsteady aerodynamic characteristics of a circular cylinder at Re=1.3×105.
Fluids Struct. 59, 351–369.
https://doi.org/10.1016/j.jfluidstructs.2015.10.001
Chen, P., Sun, J., Cheng, Y. T., & Chen, W. Y. (2023). Experimental study on the flow pattern of double-hemisphere rough elements with different streamwise spacing.
Journal of Applied Fluid Mechanics, 16(8), 1531-1543.
https://doi.org/10.47176/JAFM.16.08.1635
Li, W., Peng, S., & Xi, H. (2022). Experimental investigation on the degradation of turbulent friction drag reduction over semi-circular riblets.
Experiments in Fluids, 63(12), 1-14.
https://doi.org/10.1007/s00348-022-03534-2
Menter, F., Kuntz, M., & Langtry, R. (2003). Ten years of experience with the SST Turbulence model. Turbulence, Heat and Mass Transfer, 4(1), 625-632. https://doi.
Parsons, D. R., Walker, I. J., & Wiggs, G. (2004).
Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry. Joint Meeting of the 5th International Conference on Aeolian.
https://doi.org/10.1016/j.geomorph.2003.09.012
Priyadarsan, A., & Afzal, M. S. (2023). Numerical investigation of flow past a circular cylinder modified with a single groove at low Reynolds number.
Physics of Fluids, 35(2).
https://doi.org/10.1063/5.0137530
Qi, Y. (2020). Research and application of bionic non-smooth surface cylindrical winding characteristics [D, Zhejiang University].
Qian, Q. (2018). Study on drag reduction performance of water-conveying pipe on typical trench surface [D, Southwest Petroleum University]. Chengdu.
Schewe, G. (1983). On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers.
Journal of Fluid Mechanics, 133: 265-285.
https://doi.org/10.1017/S0022112083001913
Tonui, N., & Sumner, D. (2009).
Temporal development of the wake of a non-impulsively started circular cylinder. Asme Fluids Engineering Division Summer Meeting.
https://doi.org/10.1115/FEDSM2009-78018
Wang, L., Wang, C., & Wang, S. (2021). Design and analysis of micro-nano scale nested-grooved surface structure for drag reduction based on ‘Vortex-Driven Design.
European Journal of Mechanics-B/Fluids, 85, 335-350.
https://doi.org/10.1016/j.euromechflu.2020.10.007
Yu, J. (2010). PIV Experimental Study on the Flow around Cylindrical Cactus-like Structures [D, Shanghai Jiao Tong University]. Shanghai.
Zdravkovich, M. M. (1981). Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding.
Journal of Wind Engineering and Industrial Aerodynamics, 7, 145-189.
https://doi.org/10.1016/0167-6105(81)90036-2
Zhang, J., Ma, C, & Liu, J. (2022a). Experimental and numerical investigation of flow over spiral grooved cylinders. Advances in Mechanical Engineering, 14(8), 16878132221117350. https://doi.org/10.1177/16878132221117350
Zhang, K., Ma, C., Zhang, J., Zhang, B., & Zhao, B. (2022b). Drag reduction characteristics of bionic structure composed of grooves and mucous membrane acting on turbulent boundary layer.
Journal of Applied Fluid Mechanics, 15(1), 283-292.
https://doi.org/10.47176/JAFM.15.01.32901
Zheng, C., Zhou, P., & Zhong, S. (2023). On the cylinder noise and drag reductions in different Reynolds number ranges using surface pattern fabrics.
Physics of Fluids, 35(3), 035111.
https://doi.org/10.1063/5.0138074
Zhou, B., Wang, X., Guo, W., Gho, W. M., & Tan, S. K. (2015). Experimental study on flow past a circular cylinder with rough surface.
Ocean Engineering, 109(3), 7-13.
https://doi.org/10.1016/j.oceaneng.2015.08.062