Alcamo, R., Micale, G., Grisafi, F., Brucato, A., & Ciofalo, M. (2005). Large-eddy simulation of turbulent flow in an unbaffled stirred tank driven by a Rushton turbine.
Chemical Engineering Science,
60(8–9), 2303–2316.
https://doi.org/10.1016/j.ces.2004.11.017
Alonzo-Garcia, A., Mendoza-Escamilla, V. X., Martinez-Delgadillo, S. A., Gonzalez-Neria, I., Del C Gutiérrez-Torres, C., & Jiménez-Bernal, J. A. (2019). On the performance of different rans based models to describe the turbulent flow in an agitated vessel using non-structured grids and PIV validation.
Brazilian Journal of Chemical Engineering,
36(1), 361–382.
https://doi.org/10.1590/0104-6632.20190361s20180091
ANSYS, I. (2013). ANSYS fluent theory guide (Release, 1). ANSYS.
Armenante, P. M., & Nagamine, E. U. (1998). Effect of low off-bottom impeller clearance on the minimum agitation speed for complete suspension of solids in stirred tanks.
Chemical Engineering Science,
53(9), 1757–1775.
https://doi.org/10.1016/S0009-2509(98)00001-3
Armenante, P. M., Nagamine, E. U., & Susanto, J. (1998). Determination of Correlations to Predict the Minimum Agitation Speed for Complete Solid Suspension in Agitated Vessels.
The Canadian Journal of Chemical Engineering,
76, 413–419.
https://doi.org/10.1002/cjce.5450760310
Başbuğ, S., Papadakis, G., & Vassilicos, J. C. (2018). Reduced power consumption in stirred vessels by means of fractal impellers.
AIChE Journal,
64(4), 1485–1499.
https://doi.org/10.1002/aic.16096
Bates, R. L., Fondy, P. L., & Corpstein, R. R. (1963). Examination of some geometric parameters of impeller power.
Industrial & Engineering Chemistry Process Design and Development,
2(4), 310–314.
https://doi.org/10.1021/i260008a011
Celik, B., Ghia, U., Roache, P. J., Freitas, C. J., Coleman, H., & Raad, P. E. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications.
Journal of Fluids Engineering,
130(7), 078001.
https://doi.org/10.1115/1.2960953
Coroneo, M., Montante, G., Paglianti, A., & Magelli, F. (2011). CFD prediction of fluid flow and mixing in stirred tanks: Numerical issues about the RANS simulations.
Computers & Chemical Engineering,
35(10), 1959–1968.
https://doi.org/10.1016/j.compchemeng.2010.12.007
Galletti, C., Brunazzi, E., Yianneskis, M., & Paglianti, A. (2003). Spectral and wavelet analysis of the flow pattern transition with impeller clearance variations in a stirred vessel.
Chemical Engineering Science,
58(17), 3859–3875.
https://doi.org/10.1016/S0009-2509(03)00230-6
Iyer, D. K., & Patel, A. K. (2022). Physical Reasoning of Double- to Single-Loop Transition in Industrial Reactors using Computational Fluid Dynamics.
J. Appl. Fluid Mech.,
15 (5), 1621-1634.
https://doi.org/10.47176/jafm.15.05.1190.
Jirout, T., & Jiroutová, D. (2020). Application of theoretical and experimental findings for optimization of mixing processes and equipment.
Processes,
8(955), 1-25.
https://doi.org/10.3390/pr8080955
Joshi, J. B., Nere, N. K., Rane, C. V., Murthy, B. N., Mathpati, C. S., Patwardhan, A. W., & Ranade, V. V. (2011). CFD simulation of stirred tanks: Comparison of turbulence models. Part I: Radial flow impellers.
The Canadian Journal of Chemical Engineering,
89(1), 23–82.
https://doi.org/10.1002/cjce.20446
Kolář, V. (1961). Studies on mixing. X. Suspending solid particles in liquids by means of mechanical agitation.
Collection of Czechoslovak Chemical Communications,
26(3), 613–627.
https://doi.org/10.1135/cccc19610613
Li, Z., Bao, Y., & Gao, Z. (2011). PIV experiments and large eddy simulations of single-loop flow fields in Rushton turbine stirred tanks.
Chemical Engineering Science,
66(6), 1219–1231.
https://doi.org/10.1016/j.ces.2010.12.024
Longest, P. W., & Vinchurkar, S. (2007). Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data.
Medical Engineering & Physics,
29(3), 350–366.
https://doi.org/10.1016/j.medengphy.2006.05.012
Montante, G., Brucato, A., Lee, K. C., & Yianneskis, M. (1999). An experimental study of double-to-single-loop transition in stirred vessels.
The Canadian Journal of Chemical Engineering,
77(4), 649–659.
https://doi.org/10.1002/cjce.5450770405
Montante, G., Lee, K. C., Brucato, A., & Yianneskis, M. (2001). Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vessels.
Chemical Engineering Science,
56(12), 3751–3770.
https://doi.org/10.1016/S0009-2509(01)00089-6
Ochieng, A., Onyango, M. S., Kumar, A., Kiriamiti, K., & Musonge, P. (2008). Mixing in a tank stirred by a Rushton turbine at a low clearance.
Chemical Engineering and Processing: Process Intensification,
47(5), 842–851.
https://doi.org/10.1016/j.cep.2007.01.034
Sepro mixing & pumping. (2022, August 20). Mixing fundamentals: solids suspension. 101A-9850 201 Street, Langley, British Columbia VIM 4A3, Canada. https://mixing.seprosystems.com
Van Der Molen, K., & Van Maanen, H. R. E. (1978). Laser-Doppler measurements of the turbulent flow in stirred vessels to establish scaling rules.
Chemical Engineering Science,
33(9), 1161–1168.
https://doi.org/10.1016/0009-2509(78)85081-7
Yapici, K., Karasozen, B., Schäfer, M., & Uludag, Y. (2008). Numerical investigation of the effect of the Rushton type turbine design factors on agitated tank flow characteristics.
Chemical Engineering and Processing: Process Intensification,
47(8), 1340–1349.
https://doi.org/10.1016/j.cep.2007.05.002
Zhu, Q., Xiao, H., Chen, A., Geng, S., & Huang, Q. (2019). CFD study on double- to single-loop flow pattern transition and its influence on macro mixing efficiency in fully baffled tank stirred by a Rushton turbine.
Chinese Journal of Chemical Engineering,
27(5), 993–1000.
https://doi.org/10.1016/j.cjche.2018.10.002