Bunker, R. S. (2014, August 4).
Effect of partial coating blockage on film cooling effectiveness. ASME Turbo Expo 2000: Power for Land, Sea, and Air.
https://doi.org/10.1115/2000-GT-0244
Chang, J., Du, Y., Zheng, S., Duan, X., & Liu, Y. (2019). Performance analysis of different influencing factors on film cooling and the internal relations with vortex structures.
AIP Advances, 9(7), 070701.
https://doi.org/10.1063/1.5110726
Chen, Z., Zhang, Z., Li, Y., Su, X., & Yuan, X. (2019). Vortex dynamics based analysis of internal crossflow effect on film cooling performance.
International Journal of Heat and Mass Transfer, 145, 118757.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118757
Funazaki, K., Kawabata, H., Takahashi, D., & Okita, Y. (2013).
Experimental and Numerical Studies on Leading Edge Film Cooling Performance: Effects of Hole Exit Shape and Freestream Turbulence. 1223–1233
. https://doi.org/10.1115/GT2012-68217
Huang, K., Zhang, J., Tan, X., & Shan, Y. (2018). Experimental study on film cooling performance of imperfect holes.
Chinese Journal of Aeronautics, 31(6), 1215–1221.
https://doi.org/10.1016/j.cja.2018.04.001
Jiang, Y. T., Deng, H. F., You, X. L., Zhao, H. J., & Yue, G. Q. (2020). Numerical investigation on film cooling mechanism with different coolant delivery configurations.
Journal of Applied Fluid Mechanics, 14(1), 175–185.
https://doi.org/10.47176/jafm.14.01.31345
Jovanovic´, M. B., de Lange, H. C., & van Steenhoven, A. A. (2005).
Influence of laser drilling imperfection on film cooling performances. Turbo, Parts A and B, 285–292.
https://doi.org/10.1115/GT2005-68251
Lim, T. T., New, T. H., & Luo, S. C. (2001). On the development of large-scale structures of a jet normal to a cross flow.
Physics of Fluids, 13(3), 770–775.
https://doi.org/10.1063/1.1347960
Lakehal, D., Theodoridis, G. S., & Rodi, W. (2001). Three-dimensional flow and heat transfer calculations of film cooling at the leading edge of a symmetrical turbine blade model.
International Journal of Heat and Fluid Flow, 22(2), 113–122.
https://doi.org/10.1016/S0142-727X(00)00084-9
Nemdili, F., Azzi, A., & Jubran, B. A. (2011). Numerical investigation of the influence of a hole imperfection on film cooling effectiveness.
International Journal of Numerical Methods for Heat & Fluid Flow, 21(1), 46–60.
https://doi.org/10.1108/09615531111095067
Panda, R. K., Pujari, A. K., & Gudla, B. (2023). A Comparative study of film cooling with combined impingement and film cooling.
Journal of Applied Fluid Mechanics, 16(7), 1386–1401.
https://doi.org/10.47176/jafm.16.07.1669
Rezzag, T., & Jubran, B. A. (2019b, June 17).
A numerical study on the effect of hole inclination angle with imperfection on film cooling effectiveness. GT2019.
https://doi.org/10.1115/GT2019-90490
Tian, K., Wang, J., Liu, C., Yang, L., & Sundén, B. (2018). Effect of blockage configuration on film cooling with and without mist injection.
Energy, 153, 661–670.
https://doi.org/10.1016/j.energy.2018.04.050
Walters, D. K., & Leylek, J. H. (1997). A detailed analysis of film-cooling physics: part I—Streamwise injection with cylindrical holes.
Journal of Turbomachinery, 122(1), 102–112.
https://doi.org/10.1115/1.555433
Wu, H., Cheng, H., Li, Y., Rong, C., & Ding, S. (2016). Effects of side hole position and blowing ratio on sister hole film cooling performance in a flat plate. Applied Thermal Engineering, 93, 718–730. https://doi.org/10.1016/j.applthermaleng.2015.09.118
Zhan, J., Li, Y., Wai, W. O., & Hu, W. (2019). Comparison between the Q criterion and Rortex in the application of an in-stream structure.
Physics of Fluids, 31(12), 121701.
https://doi.org/10.1063/1.5124245
Zhang, J., Zhang, S., Wang, C., & Tan, X. (2020). Recent advances in film cooling enhancement: A review. Chinese Journal of Aeronautics, S1000936120300972. https://doi.org/10.1016/j.cja.2019.12.023
Zhang, W., & Zhu, H. R. (2020). Film cooling performance of the staggered arrangement of auxiliary holes and main holes on a flat plate. Journal
of Applied Fluid Mechanics, 14(3), 741–752.
https://doi.org/10.47176/jafm.14.03.31933