Comparative Analysis of Turbulence Models for Evaluating the Aerodynamic Characteristics of Bus

Document Type : Regular Article

Authors

1 College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, PR China

2 Department of Mechanical Engineering, New York Institute of Technology, New York, USA

Abstract

In order to determine the most suitable turbulence model for studying the aerodynamic performance of bus, the effects of different turbulence models on the aerodynamic characteristics of bus were investigated. A comparative analysis was conducted on five turbulence models (IDDES, DDES, DES, LES, URANS). The pressure distribution on the cross section at x=0 and y=0 is also analyzed for each model. The results reveal that IDDES accurately captures the negative pressure at the rear of the bus and predicts the pressure gradients more effectively than other models. IDDES also captures more vortices at the head of the bus and predicts the wake flow more widely than other models. DDES has obvious shedding phenomenon in the wake flow, while IDDES provides a relatively smooth airflow trajectory, but its prediction of airflow trajectory at a distance is less clear. Through quantitative and qualitative analyses of the aerodynamic characteristics of bus under different turbulence models, it can be concluded that IDDES is the most suitable turbulence model to study the aerodynamic characteristics of bus.

Keywords

Main Subjects


Alonso-Estébanez, A., Del Coz Díaz, J. J., Álvarez Rabanal, F. P. & Pascual-Muñoz, P. (2017). Numerical simulation of bus aerodynamics on several classes of bridge decks. Engineering Applications of Computational Fluid Mechanics, 11(1), 435-449. https://doi.org/10.1080/19942060.2016.1201544
Altaf, A., Omar, A. A., & Asrar, W. (2014). Passive drag reduction of square back road vehicles. Journal of Wind Engineering and Industrial Aerodynamics, 134, 30-43. https://doi.org/10.1016/j.jweia.2014.08.006
Anzalotta, C., Joshi, K., Fernandez, E., & Bhattacharya, S. (2020). Effect of forcing the tip-gap of a NACA0065 airfoil using plasma actuators: A proof-of-concept study. Aerospace Science and Technology, 107, 106268. https://doi.org/10.1016/j.ast.2020.106268
Argyropoulos, C. D., & Markatos, N. C. (2015). Recent advances on the numerical modelling of turbulent flows. Applied Mathematical Modelling, 39(2), 693-732. https://doi.org/10.1016/j.apm.2014.07.001
Ashagrie, G., Nallamothu, R. B., Nallamothu, A. K., & Nallamothu, S. K. (2017). A study on driving stability of bus using computational fluid dynamics (CFD). International Journal for Research in Applied Science & Engineering Technology, 5(11). https://www.researchgate.net/publication/322234213
Bhattacharya, S., & Ahmed, A. (2010). Effect of sinusoidal forcing on the wake of a circular cylinder. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.
Chang, Y., Yang, Z., & Li, Q. (2021). Numerical and experimental research on flow and aerodynamic noise characteristics of coach. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 235(6), 1685-1701. https://doi.org/10.1177/0954407020973816
Chaouat, B. (2017). The state of the art of hybrid RANS/LES modeling for the simulation of turbulent flows. Flow, Turbulence and Combustion, 99(2), 279-327. https://doi.org/10.1007/s10494-017-9828-8
Cheng, S. Y., Tsubokura, M., Nakashima, T., Nouzawa, T., & Okada, Y. (2011). A numerical analysis of transient flow past road vehicles subjected to pitching oscillation. Journal of Wind Engineering & Industrial Aerodynamics, 99(5), 511-522. https://doi.org/10.1016/j.jweia.2011.02.001
Deck, S., & Renard, N. (2020). Towards an enhanced protection of attached boundary layers in hybrid RANS/LES methods. Journal of Computational Physics, 400. https://doi.org/10.1016/j.jcp.2019.108970
Dong, Y., Yan, Y., & Liu, C. (2016). New visualization method for vortex structure in turbulence by lambda2 and vortex filaments. Applied Mathematical Modelling, 40(1), 500-509. https://doi.org/10.1016/j.apm.2015.04.059
Dorigatti, F., Sterling, M., Rocchi, D., Belloli, M., Quinn, A. D., Baker, C. J., & Ozkan, E. (2012). Wind tunnel measurements of crosswind loads on high sided vehicles over long span bridges. Journal of Wind Engineering and Industrial Aerodynamics, 107, 214-224. https://doi.org/10.1016/j.jweia.2012.04.017
Duraisamy, K., Iaccarino, G., & Xiao, H. (2019). Turbulence modeling in the age of data. Annual Review of Fluid Mechanics, 51(1). https://doi.org/10.1146/annurev-fluid-010518-040547
François, D. G., Delnero, J. S., Colman, J., Marañón, D. L. J., & Camocardi, M. (2009, January). Experimental determination of Stationary Aerodynamics loads on a double deck Bus. 11th Americas Conference on Wind Engineering, San Juan, Puerto Rico. http://www.iawe.org/Proceedings/11ACWE/11ACWE-MaranonDiLeo.pdf
Friess, C., Manceau, R., & Gatski, T. B. (2015). Toward an equivalence criterion for hybrid RANS/LES methods. Computers & Fluids, 122, 233-246. https://doi.org/10.1016/j.compfluid.2015.08.010
Garcia-Ribeiro, D., Bravo-Mosquera, P. D., Ayala-Zuluaga, J. A., Martinez-Castañeda, D. F., Valbuena-Aguilera, J. S., Cerón-Muñoz, H. D., & Vaca-Rios, J. J. (2023). Drag reduction of a commercial bus with add-on aerodynamic devices. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 237(7), 1623-1636. https://doi.org/10.1177/09544070221098209
Gilotte, P., Mortazavi, I., Colon de Carvajal, A., Edwige, S., & Nayeri, C. N. (2022). Aerodynamical characteristics of a reduced scale ground vehicle according to yaw angle variations. International Journal of Numerical Methods for Heat & Fluid Flow, 32(4), 1222-1236. https://doi.org/10.1108/HFF-08-2021-0522
Gu, Z. Q., Huang, T. M., Chen, Z., Zong, Y. Q., & Zeng, W. (2016). Large eddy simulation of the flow-field around road vehicle subjected to pitching motion. Journal of Applied Fluid Mechanics, 9(6), 2731-2741. https://doi.org/10.29252/jafm.09.06.25330
He, K., Minelli, G., Wang, J., Gao, G., & Krajnovi, S. (2021). Assessment of les, iddes and rans approaches for prediction of wakes behind notchback road vehicles. Journal of Wind Engineering and Industrial Aerodynamics, 217, 104737. https://doi.org/10.1016/j.jweia.2021.104737
He, K., Su, X., Gao, G., & Krajnovi, S. (2022). Evaluation of les, iddes and urans for prediction of flow around a streamlined high-speed train. Journal of Wind Engineering and Industrial Aerodynamics, 223, 104952. https://doi.org/10.1016/j.jweia.2022.104952
Huang, T. M., Gu, Z. Q., & Feng, C. J. (2017). Coupled analysis of unsteady aerodynamics and vehicle motion of a passenger car in crosswind condition. Journal of Applied Fluid Mechanics, 10(2), 625-637. https://doi.org/10.18869/acadpub.jafm.73.239.26639
Huang, T., Feng, M., Huang, J., Ma, J., Yi, D., Ren, X., & Ou, C. (2023). Aerodynamic stability of vehicle passing through a bridge tower at high speed under crosswind conditions with different road adhesion coefficients. Alexandria Engineering Journal, 77, 461-478. https://doi.org/10.1016/j.aej.2023.07.001
Jadhav, C. R., & Chorage, R. P. (2020). Modification in commercial bus model to overcome aerodynamic drag effect by using CFD analysis. Results in Engineering, 6, 100091. https://doi.org/10.1016/j.rineng.2019.100091
Joshi, K., & Bhattacharya, S. (2019). Large-eddy simulation of the effect of distributed plasma forcing on the wake of a circular cylinder. Computers & Fluids, 193, 104295. https://doi:10.1016/j.compfluid.2019.104295
Joshi, K., Latrobe, B., & Bhattacharya, S. (2023). Altering the wake dynamics of a circular cylinder with harmonic forcing. Physics of Fluids, 35(6). https://doi.org/10.1063/5.0153359
Kanekar, S., Thakre, P., & Rajkumar, E. (2017). Aerodynamic study of state transport bus using computational fluid dynamics. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899x/263/6/062052
Kongwat, S., Jongpradist, P., & Hasegawa, H. (2020). Lightweight bus body design and optimization for rollover crashworthiness. International Journal of Automotive Technology, 21, 981-991. https://doi.org/10.1007/s12239-020-0093-9
Krajnovic, S., & Davidson, L. (2003). Numerical study of the flow around a bus-shaped body. Journal of Fluids Engineering, 125(3), 500-509. https://doi.org/10.1115/1.1567305
Li, L., You, S., & Yang, C. (2016). Multi-objective stochastic MPC-based system control architecture for plug-in hybrid electric bus. IEEE Transactions on Industrial Electronics, 63(8), 4752-4763. https://doi.org/10.1109/TIE.2016.2547359
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. https://doi.org/10.2514/3.12149
Mockett, C., Fuchs, M., Garbaruk, A., Shur, M., Spalart, P., Strelets, M., & Travin, A. (2015). Two non-zonal approaches to accelerate RANS to LES transition of free shear layers in DES. Progress in Hybrid RANS-LES Modelling, 130, 187-201. https://doi.org/10.1007/978-3-319-15141-0-15
Mohamed, E. A., Radhwi, M. N., & Abdel Gawad, A. F. (2015). Computational investigation of aerodynamic characteristics and drag reduction of a bus model. American Journal of Aerospace Engineering, 2(1-1), 64-73. https://doi.org/10.11648/j.ajae.s.20150201.16
Nived, M. R., Mukesh, B. S., Athkuri, S. S. C., & Eswaran, V. (2022). On the performance of RANS turbulence models in predicting static stall over airfoils at high Reynolds numbers. International Journal of Numerical Methods for Heat & Fluid Flow, 32(4), 1299-1323. https://doi.org/10.1108/HFF-08-2021-0519
Patel, N., He, M., Hemida, H., & Quinn, A. (2019). Large-eddy simulation of the airflow around a truck. Journal of Wind Engineering and Industrial Aerodynamics, 195, 104017. https://doi.org/10.1016/j.jweia.2019.104017
Probst, A., & Melber-Wilkending, S. (2022). Hybrid RANS/LES of a generic high-lift aircraft configuration near maximum lift. International Journal of Numerical Methods for Heat & Fluid Flow, 32(4), 1204-1221. https://doi.org/10.1108/HFF-08-2021-0525
Reddy, K. R., Ryon, J. A., & Durbin, P. A. (2014). A DDES model with a Smagorinsky-type eddy viscosity formulation and log-layer mismatch correction. International Journal of Heat and Fluid Flow, 50, 103-113. https://doi.org/10.1016/j.ijheatfluidflow.2014.06.002
Renard, N., & Deck, S. (2015). Improvements in zonal detached eddy simulation for wall modeled large eddy simulation. AIAA Journal, 53(11), 3499-3504. https://doi.org/10.1007/s00162-011-0240-z
Salari, K., & Ortega, J. M. (2021). Aerodynamic integration produces a vehicle shape with a negative drag coefficient. Proceedings of the National Academy of Sciences, 118(27), e2106406118. https://doi.org/10.1073/pnas.2106406118
Serre, E., Minguez, M., Pasquetti, R., Guilmineau, E., Deng, G. B., Kornhaas, M., & Rodi, W. (2013). On simulating the turbulent flow around the Ahmed body: A French–German collaborative evaluation of LES and DES. Computers & Fluids, 78, 10-23. https://doi.org/10.1016/j.compfluid.2011.05.017
Shur, M. L., Spalart, P. R., Strelets, M. K., & Travin, A. K. (2008). A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow, 29(6), 1638-1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
Shur, M. L., Spalart, P. R., Strelets, M. K., & Travin, A. K. (2015). An enhanced version of DES with rapid transition from RANS to LES in separated flows. Flow, Turbulence and Combustion, 95(4). https://doi.org/10.1007/s10494-015-9618-0
Spalart, P. R. (2009). Detached-eddy simulation. Annual Review of Fluid Mechanics, 41(1), 181-202. https://doi.org/10.1146/annurev.fluid.010908.165130
Spalart, P. R. (2015). Philosophies and fallacies in turbulence modeling. Progress in Aerospace Sciences, 74, 1-15. https://doi.org/10.1016/j.paerosci.2014.12.004
Tyliszczak, A., Cavaliere, D. E., & Mastorakos, E. (2014). LES/CMC of blow-off in a liquid fueled swirl burner. Flow, Turbulence and Combustion, 92(1-2), 237-267. https://doi.org/10.1007/s10494-013-9477-5
Volpe, R., Devinant, P., & Kourta, A. (2015). Experimental characterization of the unsteady natural wake of the full-scale square back Ahmed body: flow bi-stability and spectral analysis. Experiments in Fluids, 56(5), 1-22. https://doi.org/10.1007/s00348-015-1972-0
Wang, S., Bell, J. R., Burton, D., Herbst, A. H., Sheridan, J., & Thompson, M. C. (2017). The performance of different turbulence models (urans, sas and des) for predicting high-speed train slipstream. Journal of Wind Engineering and Industrial Aerodynamics, 165, 46-57. https://doi.org/10.1016/j.jweia.2017.03.001
Winkler, N., Drugge, L., Trigell, A. S., & Efraimsson, G. (2016). Coupling aerodynamics to vehicle dynamics in transient crosswinds including a driver model. Computers & Fluids, 138, 26-34. https://doi.org/10.1016/j.compfluid.2016.08.006
Yudianto, A., Adiyasa, I. W., & Yudantoko, A. (2021). Aerodynamics of bus platooning under crosswind. Automotive Experiences, 4(3), 119-130. https://doi.org/10.31603/ae.5298
Yudianto, A., Sofyan, H., & Fauzi, N. A. (2022). Aerodynamic characteristics of overtaking bus under crosswind: CFD investigation. CFD Letters, 14(8), 20-32. https://doi.org/10.37934/cfdl.14.8.2032
Zhang, Q., Su, C., & Wang, Y. (2020). Numerical investigation on aerodynamic performance and stability of a sedan under wind-bridge-tunnel road condition. Alexandria Engineering Journal, 59(5), 3963-3980. https://doi.org/10.1016/j.aej.2020.07.004
Zhao, D., Zhang, D., & Chen, C. (2019, November). Study on the Influence of Crosswind Angle and Longitudinal Spacing on bus in a Platoon. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/688/2/022042
Zheng, L. D., Yang, Y., Qiang, G. L., & Gu, Z. (2022). Numerical analysis for wake flow field of Ahmed model based on a nonlinear-LRN/DES turbulence model. International Journal of Numerical Methods for Heat & Fluid Flow, 32(4), 1348-1374. https://doi.org/10.1108/HFF-06-2021-0438