Alonso-Estébanez, A., Del Coz Díaz, J. J., Álvarez Rabanal, F. P. & Pascual-Muñoz, P. (2017). Numerical simulation of bus aerodynamics on several classes of bridge decks.
Engineering Applications of Computational Fluid Mechanics,
11(1), 435-449.
https://doi.org/10.1080/19942060.2016.1201544
Anzalotta, C., Joshi, K., Fernandez, E., & Bhattacharya, S. (2020). Effect of forcing the tip-gap of a NACA0065 airfoil using plasma actuators: A proof-of-concept study.
Aerospace Science and Technology,
107, 106268.
https://doi.org/10.1016/j.ast.2020.106268
Ashagrie, G., Nallamothu, R. B., Nallamothu, A. K., & Nallamothu, S. K. (2017). A study on driving stability of bus using computational fluid dynamics (CFD).
International Journal for Research in Applied Science & Engineering Technology,
5(11).
https://www.researchgate.net/publication/322234213
Bhattacharya, S., & Ahmed, A. (2010). Effect of sinusoidal forcing on the wake of a circular cylinder. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.
Chang, Y., Yang, Z., & Li, Q. (2021). Numerical and experimental research on flow and aerodynamic noise characteristics of coach.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,
235(6), 1685-1701.
https://doi.org/10.1177/0954407020973816
Cheng, S. Y., Tsubokura, M., Nakashima, T., Nouzawa, T., & Okada, Y. (2011). A numerical analysis of transient flow past road vehicles subjected to pitching oscillation.
Journal of Wind Engineering & Industrial Aerodynamics,
99(5), 511-522.
https://doi.org/10.1016/j.jweia.2011.02.001
Dong, Y., Yan, Y., & Liu, C. (2016). New visualization method for vortex structure in turbulence by lambda2 and vortex filaments.
Applied Mathematical Modelling,
40(1), 500-509.
https://doi.org/10.1016/j.apm.2015.04.059
Dorigatti, F., Sterling, M., Rocchi, D., Belloli, M., Quinn, A. D., Baker, C. J., & Ozkan, E. (2012). Wind tunnel measurements of crosswind loads on high sided vehicles over long span bridges.
Journal of Wind Engineering and Industrial Aerodynamics,
107, 214-224.
https://doi.org/10.1016/j.jweia.2012.04.017
François, D. G., Delnero, J. S., Colman, J., Marañón, D. L. J., & Camocardi, M. (2009, January). Experimental determination of Stationary Aerodynamics loads on a double deck Bus. 11th Americas Conference on Wind Engineering, San Juan, Puerto Rico. http://www.iawe.org/Proceedings/11ACWE/11ACWE-MaranonDiLeo.pdf
Garcia-Ribeiro, D., Bravo-Mosquera, P. D., Ayala-Zuluaga, J. A., Martinez-Castañeda, D. F., Valbuena-Aguilera, J. S., Cerón-Muñoz, H. D., & Vaca-Rios, J. J. (2023). Drag reduction of a commercial bus with add-on aerodynamic devices.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,
237(7), 1623-1636.
https://doi.org/10.1177/09544070221098209
Gilotte, P., Mortazavi, I., Colon de Carvajal, A., Edwige, S., & Nayeri, C. N. (2022). Aerodynamical characteristics of a reduced scale ground vehicle according to yaw angle variations.
International Journal of Numerical Methods for Heat & Fluid Flow,
32(4), 1222-1236.
https://doi.org/10.1108/HFF-08-2021-0522
Gu, Z. Q., Huang, T. M., Chen, Z., Zong, Y. Q., & Zeng, W. (2016). Large eddy simulation of the flow-field around road vehicle subjected to pitching motion. Journal of Applied Fluid Mechanics, 9(6), 2731-2741. https://doi.org/10.29252/jafm.09.06.25330
He, K., Minelli, G., Wang, J., Gao, G., & Krajnovi, S. (2021). Assessment of les, iddes and rans approaches for prediction of wakes behind notchback road vehicles.
Journal of Wind Engineering and Industrial Aerodynamics,
217, 104737.
https://doi.org/10.1016/j.jweia.2021.104737
He, K., Su, X., Gao, G., & Krajnovi, S. (2022). Evaluation of les, iddes and urans for prediction of flow around a streamlined high-speed train.
Journal of Wind Engineering and Industrial Aerodynamics,
223, 104952.
https://doi.org/10.1016/j.jweia.2022.104952
Huang, T. M., Gu, Z. Q., & Feng, C. J. (2017). Coupled analysis of unsteady aerodynamics and vehicle motion of a passenger car in crosswind condition. Journal of Applied Fluid Mechanics, 10(2), 625-637. https://doi.org/10.18869/acadpub.jafm.73.239.26639
Huang, T., Feng, M., Huang, J., Ma, J., Yi, D., Ren, X., & Ou, C. (2023). Aerodynamic stability of vehicle passing through a bridge tower at high speed under crosswind conditions with different road adhesion coefficients.
Alexandria Engineering Journal,
77, 461-478.
https://doi.org/10.1016/j.aej.2023.07.001
Joshi, K., & Bhattacharya, S. (2019). Large-eddy simulation of the effect of distributed plasma forcing on the wake of a circular cylinder.
Computers & Fluids,
193, 104295.
https://doi:10.1016/j.compfluid.2019.104295
Joshi, K., Latrobe, B., & Bhattacharya, S. (2023). Altering the wake dynamics of a circular cylinder with harmonic forcing.
Physics of Fluids,
35(6).
https://doi.org/10.1063/5.0153359
Kongwat, S., Jongpradist, P., & Hasegawa, H. (2020). Lightweight bus body design and optimization for rollover crashworthiness.
International Journal of Automotive Technology,
21, 981-991.
https://doi.org/10.1007/s12239-020-0093-9
Krajnovic, S., & Davidson, L. (2003). Numerical study of the flow around a bus-shaped body.
Journal of Fluids Engineering,
125(3), 500-509.
https://doi.org/10.1115/1.1567305
Li, L., You, S., & Yang, C. (2016). Multi-objective stochastic MPC-based system control architecture for plug-in hybrid electric bus.
IEEE Transactions on Industrial Electronics,
63(8), 4752-4763.
https://doi.org/10.1109/TIE.2016.2547359
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications.
AIAA Journal,
32(8), 1598-1605.
https://doi.org/10.2514/3.12149
Mockett, C., Fuchs, M., Garbaruk, A., Shur, M., Spalart, P., Strelets, M., & Travin, A. (2015). Two non-zonal approaches to accelerate RANS to LES transition of free shear layers in DES.
Progress in Hybrid RANS-LES Modelling,
130, 187-201.
https://doi.org/10.1007/978-3-319-15141-0-15
Mohamed, E. A., Radhwi, M. N., & Abdel Gawad, A. F. (2015). Computational investigation of aerodynamic characteristics and drag reduction of a bus model.
American Journal of Aerospace Engineering,
2(1-1), 64-73.
https://doi.org/10.11648/j.ajae.s.20150201.16
Patel, N., He, M., Hemida, H., & Quinn, A. (2019). Large-eddy simulation of the airflow around a truck.
Journal of Wind Engineering and Industrial Aerodynamics,
195, 104017.
https://doi.org/10.1016/j.jweia.2019.104017
Salari, K., & Ortega, J. M. (2021). Aerodynamic integration produces a vehicle shape with a negative drag coefficient.
Proceedings of the National Academy of Sciences,
118(27), e2106406118.
https://doi.org/10.1073/pnas.2106406118
Serre, E., Minguez, M., Pasquetti, R., Guilmineau, E., Deng, G. B., Kornhaas, M., & Rodi, W. (2013). On simulating the turbulent flow around the Ahmed body: A French–German collaborative evaluation of LES and DES.
Computers & Fluids,
78, 10-23.
https://doi.org/10.1016/j.compfluid.2011.05.017
Shur, M. L., Spalart, P. R., Strelets, M. K., & Travin, A. K. (2008). A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities.
International Journal of Heat and Fluid Flow,
29(6), 1638-1649.
https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
Shur, M. L., Spalart, P. R., Strelets, M. K., & Travin, A. K. (2015). An enhanced version of DES with rapid transition from RANS to LES in separated flows.
Flow, Turbulence and Combustion,
95(4).
https://doi.org/10.1007/s10494-015-9618-0
Volpe, R., Devinant, P., & Kourta, A. (2015). Experimental characterization of the unsteady natural wake of the full-scale square back Ahmed body: flow bi-stability and spectral analysis.
Experiments in Fluids,
56(5), 1-22.
https://doi.org/10.1007/s00348-015-1972-0
Wang, S., Bell, J. R., Burton, D., Herbst, A. H., Sheridan, J., & Thompson, M. C. (2017). The performance of different turbulence models (urans, sas and des) for predicting high-speed train slipstream.
Journal of Wind Engineering and Industrial Aerodynamics,
165, 46-57.
https://doi.org/10.1016/j.jweia.2017.03.001
Winkler, N., Drugge, L., Trigell, A. S., & Efraimsson, G. (2016). Coupling aerodynamics to vehicle dynamics in transient crosswinds including a driver model.
Computers & Fluids,
138, 26-34.
https://doi.org/10.1016/j.compfluid.2016.08.006
Yudianto, A., Adiyasa, I. W., & Yudantoko, A. (2021). Aerodynamics of bus platooning under crosswind.
Automotive Experiences,
4(3), 119-130.
https://doi.org/10.31603/ae.5298
Yudianto, A., Sofyan, H., & Fauzi, N. A. (2022). Aerodynamic characteristics of overtaking bus under crosswind: CFD investigation.
CFD Letters,
14(8), 20-32.
https://doi.org/10.37934/cfdl.14.8.2032
Zhang, Q., Su, C., & Wang, Y. (2020). Numerical investigation on aerodynamic performance and stability of a sedan under wind-bridge-tunnel road condition.
Alexandria Engineering Journal,
59(5), 3963-3980.
https://doi.org/10.1016/j.aej.2020.07.004
Zhao, D., Zhang, D., & Chen, C. (2019, November).
Study on the Influence of Crosswind Angle and Longitudinal Spacing on bus in a Platoon. IOP Conference Series: Materials Science and Engineering.
https://doi.org/10.1088/1757-899X/688/2/022042