Abbas, A. S., & Mohammed, A. A. (2022). Augmentation of plate-fin heat exchanger performance with support of various types of fin configurations.
Mathematical Modelling of Engineering Problems,
9(5), 1406-1414.
https://doi.org/10.18280/mmep.090532
Abdi, H., Asaadi, S., Kivi, H. A., & Pesteei, S. M. (2019). A comprehensive numerical study on nanofluid flow and heat transfer of helical, spiral and straight tubes with different cross sections.
International Journal of Heat and Technology,
37(4), 1031-1042.
https://doi.org/10.18280/ijht.370412
ANSYS inc. (2022a) Ansys Fluent Theory Guide, Release 2022R1, January 2022.
ANSYS inc. (2022b) Ansys Fluent User’s Guide, Release 2022R1, January 2022.
Ayas, M., Skocilas, J., & Jirout, T. (2021). Friction factor of shear thinning fluids in non-circular ducts – a simplified approach for rapid engineering calculation,
Chemical Engineering Communications,
208(8), 1209-1217.
https://doi.org/10.1080/00986445.2020.1770232
Blasius, P. R. H. (1913). Das aehnlichkeitsgesetz bei reibungsvorgangen in flüssigkeiten (in German). Forschungsheft 131, 1-41.
Brown, G. G. (2002, November 3-7).
The history of the darcy-weisbach equation for pipe flow resistance. Environmental and Water Resources History Sessions at ASCE Civil Engineering Conference and Exposition, Washington, D. C., United States.
http://dx.doi.org/10.1061/40650(2003)4
Cengel, Y. A., & Cimbala, J. M. (2018). Fluid Mechanics – Fundamentals and applications. 3rd ed. McGraw-Hill, New York.
Colebrook, C. F., & White, C. M. (1937). Experiments with Fluid Friction Factor in Roughened Pipes.
Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 161, 367-381.
http://dx.doi.org/10.1098/rspa.1937.0150
Frate, L., Moretti, F., Galassi, G., & D’Auria, F. (2016). Limitations in the use of the equivalent diameter.
World Journal of Nuclear Science and Technology,
6, 53-62.
http://dx.doi.org/10.4236/wjnst.2016.61005
He, S., & Gotts, J. A. (2004). Calculation of friction coefficients for noncircular channels.
Journal of Fluids Engineering,
126, 1033-1038.
https://doi.org/10.1115/1.1845479
Khairunnisa, N., Arifin, Z., Kristiawan, B., Hijriawan, M., & Prasetyo, S. D. (2022). Investigation of spirals rectangular and rectangular tubes collector design in photovoltaic solar cell cooling systems.
International Journal of Heat and Technology,
40(6), 1359-1365.
https://doi.org/10.18280/ijht.400602
Miller, D. S. (1996). Internal flow systems, 2nd ed., BHR Group Limited, Bedfordshire, UK.
Moody, L. F. (1944). Friction factors for pipe flow. Transactions of the ASME, 66(8), 671-684.
Minhoni, R., Pereira, F., Silva, T., Castro, E., & Saad, J. )2020(. The performance of explicit formulas for determining the Darcy-Weisbach friction factor.
Engenharia Agrícola, 40(2), 258-265.
https://doi.org/10.1590/1809-4430-eng.agric.v40n2p258-265/2020
Muzychka, Y., & Yovanovich, M. (2009). Pressure drop in laminar developing flow in noncircular ducts: A scaling and modeling approach.
Journal of Fluids Engineering,
131(11), 111105.
https://doi.org/10.1115/1.4000377
Nikuradse, J. (1933). Strömungsgesetze in rauen rohren. Forschungsheft, Berlin.
Sobieski, W. (2011). The basic equations of fluid mechanics in form characteristic of the finite volume method. Technical Sciences, 14(2), 299-313.
Sobieski, W. (2013). The basic closures of fluid mechanics in form characteristic for the Finite Volume Method. Technical Sciences, 16(2), 93-107.
Weisbach, J. (1845). Lehrbuch der Ingenieur- und Maschinen-Mechanik, Theoretische Mechanik, Vieweg und Sohn, Braunschweig.