Hydraulic Investigation of Triangular Plan Form Vertical Drops

Document Type : Regular Article

Authors

Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Maragheh, East Azerbaijan, Iran

Abstract

The vertical drop is one of the most widely used hydraulic structures for dissipating the destructive energy of water. The purpose of this research is to investigate the effect of the two difference height, and five vertex angles of a triangular plan form vertical drop on energy dissipation and average velocity using the volume of fluid (VOF) method. The findings revealed that by decreasing vertex angle of the triangular plan form vertical drop, energy dissipation increases. The lowest relative depth of the pool occurs with this drop. In contrast, as the vertex angle of the triangular plan form vertical drop decreases, the average velocity at the foot of the drop increases and the maximum average velocity in the triangular plan form vertical drop with an angle of 60 degrees and a height of 0.2 m is higher than other models. The average downstream velocity also decreases by decreasing the angle  and this decrease is more intense in the center of the channel than on the sides.

Keywords

Main Subjects


Abbaszadeh, H., Norouzi, R., Sume, V., Kuriqi, A., Daneshfaraz, R., & Abraham, J. (2023). Sill Role Effect On The Flow Characteristics (Experimental And Regression Model Analytical). Fluids, 8(8), 235. https://doi.org/10.3390/fluids8080235
Bagherzadeh, M., Mousavi, F., Manafpour, M., Mirzaee, R., & Hoseini, K. (2022). Numerical Simulation And Application Of Soft Computing In Estimating Vertical Drop Energy Dissipation With Horizontal Serrated Edge. Water Supply, 22(4), 4676-4689. https://doi.org/10.2166/Ws.2022.127
Bakhmeteff, B. A. (1932). Hydraulics of open channels. ISBN 0 7506 5978 5.
Chamani, M. R., & Beirami, M. K. (2002). Flow Characteristics At Drops. Journal Of Hydraulic Engineering, 128(8), 788-791. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:8(788)
Chamani, M. R., Rajaratnam, N., & Beirami, M. K. (2008). Turbulent Jet Energy Dissipation At Vertical Drops. Hydraulic Engineering, 134, 1532-1535. https:/doi.org/10.1061/(ASCE)0733-9429(2008)134:10(1532)
Crispino, G., Dorthe, D., Gisonni, C., & Pfister, M. (2023). Hydraulic Capacity Of Bend Manholes For Supercritical Flow. Journal Of Irrigation And Drainage Engineering, 149(2), 04022048. https://doi.org/10.1061/JIDEDH.IRENG-10014
Daneshfaraz, R., Bagherzadeh, M., Esmaeeli, R., Norouzi, R., & Abraham, J. (2021a). Study Of The Performance Of Support Vector Machine For Predicting Vertical Drop Hydraulic Parameters In The Presence Of Dual Horizontal Screens. Water Supply, 21(1), 217-231. https://doi.org/10.2166/ws.2020.279
Daneshfaraz, R., Hasannia, V., Norouzi, R., Sihag, P., Sadeghfam, S., & Abraham, J. (2021b). Investigating The Effect Of Horizontal Screen On Hydraulic Parameters Of Vertical Drop. Iranian Journal Of Science And Technology, Transactions Of Civil Engineering, 45, 1909-1917. https://doi.org/10.1007/S40996-020-00572-W
Daneshfaraz, R., Hasanniya, V., & Norouzi, R. (2022a). Numerical Investigation Of Hydraulic Characteristics Effective On Vertical Drop. Numerical Methods In Civil Engineering, 7(1), 1-8. https://doi.org/10.52547/NMCE.2021.367
Daneshfaraz, R., M. Majedi Asl · S. Razmi · R. Norouzi · J. Abraham (2020). Experimental Investigation Of The Effect Of Dual Horizontal Screens On The Hydraulic Performance Of A Vertical Drop. International Journal Of Environmental Science And Technology. 17, 2927–2936. https://doi.org/10.1007/S13762-019-02622-X
Daneshfaraz, R., Norouzi, R., Patrick Abraham, J., Ebadzadeh, P., Akhondi, B., & Abar, M. (2023a). Determination Of Flow Characteristics Over Sharp-Crested Triangular Plan Form Weirs Using Numerical Simulation. Water Science, 37(1), 211-224. https://doi.org/10.1080/23570008.2023.2236384
Daneshfaraz, R., Sadeghfam, S., & Hasanniya, V. (2019). Experimental Investigation Of Energy Dissipation In Vertical Drops Equipped With A Horizontal Screen Under Supercritical Flow. Iranian Journal Of Soil And Water Research, 50(6), 1421-1436. https://doi.org/10.22059/IJSWR.2019.269301.668053
Daneshfaraz, R., Sadeghfam, S., Hasanniya, V., Abraham, J., & Norouzi, R. (2022b). Experimental Investigation On Hydraulic Efficiency Of Vertical Drop Equipped With Vertical Screens. Teknik Dergi, 33(5), 12379-12399. https://doi.org/Https://Doi.Org/10.18400/Tekderg.755938
Daneshfaraz, R., Sadeghfam, S., & Rezazadeh Judi, A. (2017). Laboratory Investigation Of The Influence Of The Location Of Screens On The Amount Of Energy Dissipation. Engineering Research Of Irrigation And Drainage Structures, 17(67), 47-62. (In Persian). https://doi.org/10.22092/Aridse.2017.109616
Daneshfaraz, R., Santos, C. A. G., Norouzi, R., Kashani, M. H., Amirrahmani, M., & Band, S. S. (2023b). Prediction Of Drop Relative Energy Dissipation Based On Harris Hawks Optimization Algorithm. Iranian Journal Of Science And Technology, Transactions Of Civil Engineering, 47(2), 1197-1210. https://doi.org/10.1007/s13201-019-1032-7
Denli Tokyay, N., & Yildiz, D. (2007). Characteristics Free Overfall For Supercritical Flows. Canadian Journal of Civil Engineering, 34, 162-169. https://doi.org/10.1139/L06-114
Esen, I., Alhumoud, J. M., & Hannan, K. A. (2004). Energy Loss At A Drop Structure With A Step At The Base. Water International, 29, 523 - 529. https://doi.org/10.1080/02508060408691816
Gill, M. A. (1979). Hydraulics Of Rectangular Vertical Drop Structures. Journal Of Hydraulic Research, 17(4), 289-302. https://doi.org/10.1080/00221687909499573
Helmi, A. M., Essawy, H. T., & Wagdy, A. (2019). Three-Dimensional Numerical Study Of Stacked Drop Manholes. Journal Of Irrigation And Drainage Engineering, 145(9), 04019017. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001414
Hong, Y. M., Huang, H. S., & Wan, S. (2010). Drop characteristics of free-falling nappe for aerated straight-drop spillway. Journal Of Hydraulic Research, 48(1), 125-129. https://doi.org/10.1080/00221680903568683
Liu, S. I., Chen, J. Y., Hong, Y. M., Huang, H. S., & Raikar, R. V. (2014). Impact characteristics of free over-fall in pool zone with upstream bed slope. Journal of Marine Science and Technology, 22(4), 476-486. https://doi.org/10.6119/JMST-013-0604-1
Moore, W. L. (1943). Energy Loss at the base of a free overfall. Transactions of the American Society of Civil Engineers, 108(1), 1343-1360.
Norouzi, R., Sihag, P., Daneshfaraz, R., Abraham, J., & Hasannia, V. (2021). Predicting relative energy dissipation for vertical drops equipped with a horizontal screen using soft computing techniques. Water Supply, 21(8), 4493-4513. https://doi.org/10.2166/ws.2021.193
Rand, W. H. (1955). Flow Geometry at straight drop spillways. Environmental Science, 81(9), 1-13.
Torres, C., Borman, D., Sleigh, A., & Neeve, D. (2021). Application of three-dimensional CFD VOF to characterize free-surface flow over trapezoidal labyrinth weir and spillway. Journal of Hydraulic Engineering, 147(3), 04021002. https://doi.org/10.1061/(ASCE)HY.1943-7900.000185
White, M. P. (1943). Discussion of moore (1943). ASCE, 108, 1361-1364.
Yonesi, H. A., Daneshfaraz, R., Mirzaee, R., & Bagherzadeh, M. (2023). Maximum energy loss in a vertical drop equipped with horizontal screen with downstream rough and smooth bed. Water Supply, 00. https://doi.org/10.2166/ws.2023.005
Zahabi, H., Torabi, M., Alamatian, E., Bahiraei, M., & Goodarzi, M. (2018). Effects of geometry and hydraulic characteristics of shallow reservoirs on sediment entrapment. Water, 10(12), 1725. https://doi.org/10.3390/w10121725