Amini, E., Peyghambarzadeh, S. M., Zarrinabadi, S., & Hashemabadi, S. H. (2022). Simulation of heat transfer and fluid flow of hot oil in radiation section of an industrial furnace considering coke deposition.
Journal of Thermal Analysis and Calorumetry,
147(14), 4821-4835.
https://doi.org/10.1007/s10973-021-10847-7.
ANSYS, ANSYS 2020 R2 Theory Guide (2020). Technical Report. ANSYS Fluent Theory Guide, V.20.2.
Barik, A. K., Satapathy, P. K., & Sahoo, S. S. (2016). CFD study of forced convective heat transfer enhancement in a 90° bend duct of square cross section using nanofluid.
Sādhanā,
41(7), 795-804.
https://doi.org/10.1007/s12046-016-0507-6.
Basso, F. O., Franco, A. T., & Pitz, D. B. (2022). Large-eddy simulation of turbulent pipe flow of Herschel-Bulkley fluids-Assessing subgrid-scale models.
Computers & Fluids,
224, 105522.
https://doi.org/10.1016/j.compfluid.2022.105522.
Chen, G., Liang, X. F., Zhou, D., Li, X. B., & Lien, F. S. (2021). Numerical study of flow and noise predictions for tandem cylinders using incompressible improved delayed detached eddy simulation combined with acoustic perturbation equations.
Ocean Engineering,
224, 108740.
https://doi.org/10.1016/j.oceaneng.2021.108740.
Dong, Q. L., Xu, H. Y., & Ye, Z. Y. (2018). Numerical investigation of unsteady flow past rudimentary landing gear using DDES, LES and URANS.
Engineering Applications of Computational Fluid Mechanics,
12(1), 689-710.
https://doi.org/10.1080/19942060.2018.1510791.
Fakhroleslam, M., & Sadrameli, S. M. (2020). Thermal cracking of hydrocarbons for the production of light olefins; a review on optimal process design, operation, and control.
Industrial & Engineering Chemistry Research,
59(27), 12288-12303.
https://pubs.acs.org/doi/10.1021/acs.iecr.0c00923.
Han, T., Wang, L., Cen, K., Song, B., Shen, R. Q., Liu, H. B., & Wang, Q. S. (2020). Flow-induced noise analysis for natural gas manifolds using LES and FW-H hybrid method.
Applied Acoustic,
159, 107101.
https://doi.org/10.1016/j.apacoust.2019.107101.
Han, Z. Y., Xie, G. S., Cao, L. W., & Sun, G. H. (2019). Material degradation and embrittlement evaluation of ethylene cracking furnace tubes after long term service.
Engineering Failure Analysis,
97, 568-578.
https://doi.org/10.1016/j.engfailanal.2019.01.041.
Jakobi, D., & Gommans, R. (2007). Corrosion by carbon and nitrogen. In H. J. Grabke & M Schütze (Eds.),
Typical failures in pyrolysis coils for ethylene cracking (pp. 259-270). European Federation of Corrosion (EFC) Series.
https://doi.org/10.1533/9781845693350.259.
Ki, H. K., & Gil, H. Y. (2020). Aeroacoustic topology optimization of noise barrier based on Lighthill's acoustic analogy.
Journal of Sound and Vibration,
483, 115512.
https://doi.org/10.1016/j.jsv.2020.115512.
Lv, F. R., Wang, M., Zhe, C. T., Guo, C., & Gao, M. (2023). Numerical simulation of 3D flow field and flow-induced noise characteristics in a T-Shaped reducing tee junction.
Fluid Dynamics & Materials Processing,
19(6), 1463-1478.
https://doi.org/10.32604/fdmp.2023.024259.
Lv, J. W., & Ji, Z. L. (2011). Numerical prediction and experimental measurement of flow noise in variable cross-sectional area pipes.
Noise and Vibration Control,
31(1), 166-169.
https://nvc.sjtu.edu.cn/CN/Y2011/V31/I1/166.
Mahamulkar, S., Yin, K. H, Agrawal, P. K., Davis, R. J., Jones, C. W., Malek, A., & Shibata, H. (2016). Formation and oxidation/gasification of carbonaceous deposits: A review.
Industrial & Engineering Chemistry Research,
55(37), 9760-9818.
https://doi.org/10.1021/acs.iecr.6b02220.
Métais, O. (2001). Large-eddy simulations of turbulence. In M. Lesieur, A. Yaglom & F. David (Eds.),
New trends in turbulence Turbulence: nouveaux aspects (pp. 113-186). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-45674-0_3.
Mohammed, A. (2018). CFD analysis for turbulent flow and heat transfer in U-Tube.
Journal of Engineering and Applied Sciences,
13, 11122-11134.
DOI:10.3923/jeasci.2018.11122.11134.
Moratilla-Vega, M. A, Lackhove, K., Janicka, J., Xia H., & Page, G. J. (2020). Jet noise analysis using an efficient LES/high-Order acoustic coupling method.
Computers & Fluids,
199, 104438.
https://doi.org/10.1016/j.compfluid.2020.104438.
Mori, M., Masumoto, T., & Ishihara, K. (2017). Study on acoustic, vibration and flow induced noise characteristics of T-shaped pipe with a square cross-section.
Applied Acoustics,
120, 137-147.
DOI:10.1016/j.apacoust.2017.01.022.
Murugu, S. P., Srikrishnan, A. R., Krishnaraj, B. K., Jayaraj, A., Mohammad, A., & Velamati, R. K. (2022). Acoustic Modeling of Compressible Jet from Chevron Nozzle:
A Comparison of URANS, LES and DES Models. Symmetry,
14(10), 1975.
https://doi.org/10.3390/sym1410197.
Pan, F. H., & Lan, J. J. (2016, April).
Analysis on Influence of Environmental Factors to the Heat Loss of Petrochemical Heating Furnace Wall. 6th International Conference on Electronic, Mechanical, Information and Management Society, Shenyang, China.
https://doi.org/10.2991/emim-16.2016.211.
Pittard, M. T., Evans, R. P., Maynes, R. D., & Blotter, J. D. (2004). Experimental and numerical investigation of turbulent flow induced pipe vibration in fully developed flow.
Review of Scientific Instruments,
75(7), 2393-2401.
https://doi.org/10.1063/1.1763256.
Ren, C. X., Ye, M. L., Wang, X. W., Dong, Z. Q., & Kang, H. C. (2020). Energy saving analysis of mechanical coke cleaning and chemical cleaning for cracking furnace.
Ethylene Industry (China),
32(03), 39-41.
https://qikan.cqvip.com/Qikan/Article/Detail?id=7102878143.
Ren, Y., Qin, Y. X., Pang, F. Z., Wang, H. F., Su, Y. M., & Li, H. C. (2023). Investigation on the flow-induced structure noise of a submerged cone-cylinder-hemisphere combined shell.
Ocean Engineering.
270, 113657.
https://doi.org/10.1016/j.oceaneng.2023.113657.
Rossi, F., Rovaglio, M., & Manenti, F. (2019). Mathematical modelling of gas-phase complex reaction systems: Pyrolysis and combustion. In T. Faravelli, F. Manenti & E. Ranzi (Eds.),
Model predictive control and dynamic real-time optimization of steam cracking units (pp. 873-897). Computer Aided Chemical Engineering.
https://doi.org/10.1016/B978-0-444-64087-1.00018-8.
Shui, Q. X., Duan, C. E., Wu, X. Y., Zhang, Y. W., Luo, X. L., Hong, C., He Y. P., Wong, N. H., & Gu Z. L. (2020). A hybrid dynamic Smagorinsky model for large eddy simulation.
International Journal of Heat and Fluid Flow,
86, 108698.
https://doi.org/10.1016/j.ijheatfluidflow.2020.108698.
Solaimany Nazar, A. R., Banisharifdehkordi, F., & Ahmadzadeh, S. (2016). Mathematical modeling of coke formation and deposition due to thermal cracking of petroleum fluids.
Chemical Engineering & Technology,
39(2), 311-321.
https://doi.org/10.1002/ceat.201400528.
Su, X., Wu, Y., Pei, H., Gao, J., & Lan, X. Y. (2016). Prediction of coke yield of FCC unit using different artificial neural network models.
China Petroleum Processing and Petrochemical Technology,
18, 102-109.
https://www.researchgate.net/publication/311603565.
Sun, X. F., & Wang, X. Y. (2021).
Fundamentals of Aeroacoustics with Applications to Aeropropulsion Systems. Shanghai Jiao Tong University Press Aerospace Series.
https://doi.org/10.1016/C2012-0-02671-3.
Tari, V., Najafizadeh, A., Aghaei, M. H., & Mazloumi, M. A. (2009). Failure analysis of ethylene cracking tube.
Journal of Failure Analysis and Prevention,
9(4), 316-322.
https://doi.org/10.1007/s11668-009-9259-5.
Temmerman, L., Leschziner, M. A., Mellen, C. P., & Fröhlich, J. (2003) Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions.
International Journal of Heat and Fluid Flow,
24(2), 157-180.
https://doi.org/10.1016/S0142-727X(02)00222-9.
Valus, M. G., Fontoura, D. V. R., Serfaty, R., & Nunhez, J. R. (2017). Computational fluid dynamic model for the estimation of coke formation and gas generation inside petrochemical furnace pipes with the use of a kinetic net.
The Canadian Journal of Chemical Engineering,
95(12): 2286-2292.
https://doi.org/10.1002/cjce.23007.
Zhang, N., Qiu, T., & Chen, B. Z. (2013). CFD simulation of propane cracking tube using detailed radical kinetic mechanism.
Chinese Journal of Chemical Engineering,
21(12), 1319-1331.
https://doi.org/10.1016/S1004-9541(13)60619-9.
Zhang, Y., Miao, Y., Zhang, S. Y., & Zhou, F. Q. (2023). Numerical simulation of acoustic field characteristics of flow-induced noise by coking on inner wall of furnace tube.
Journal of Safety and Environment,
8, 1-10.
DOI:10.13637/j.issn.1009-6094.2023.0868.