Ansys, Inc. (2019). Ansys Fluent User’s Guide. (2019R2).
Che, Z. X., Huang, S., Li, Z. W., & Chen, Z. W. (2023a). Aerodynamic drag reduction of high-speed maglev train based on air blowing/suction.
Journal of Wind Engineering and Industrial Aerodynamics,
233, 105321.
https://doi.org/10.1016/j.jweia.2023.105321
Che, Z. X., Chen, Z. W., Ni, Y. Q., Huang, S., & Li, Z. W. (2023b). Research on the impact of air-blowing on aerodynamic drag reduction and wake characteristics of a high-speed maglev train. Physics of Fluid, 35, 115138. https://doi.org/10.1063/5.0175323
Chen, Y., Gao, Y., Wang, Y. G., Yang, Z. G., & Li, C. L. (2018). Wind tunnel experimental research on the effect of guide cover on aerodynamic noise of pantograph. Technical Acoustics, 37(5), 475-481. https://doi.org/10.16300/j.cnki.1000-3630.2018.05.012
Dong, T. Y., Liang, X. F., Krajnović, S., Xiong, X. H., & Zhou, W. (2019). Effects of simplifying train bogies on surrounding flow and aerodynamic forces.
Journal of Wind Engineering & Industrial Aerodynamics,
191, 170-182.
https://doi.org/10.1016/j.jweia.2019.06.006
Huang, K. L., Yuan, T. C., Yang, J., Miao, X. D., & Song, R. G. (2020). Approach of reduction of aerodynamic noise of pantograph cavity of high-speed train based on jet.
Journal of the China Railway Society, 42 (7), 50-56.
https://doi.org/10.3969/j.issn.1001-8360.2020.07.006
Huang, S., Hemida, H., & Yang, M. Z. (2016). Numerical calculation of the slipstream generated by a CRH2 high-speed train.
Proceedings of the Institution of Mechanical Engineering, Part F: Journal of Rail and Rapid Transit,
230(1), 103-116.
https://doi.org/10.1177/0954409714528891
Huang, S., Yu, Y., Li, Z. W., & Che, Z. X. (2021). Study of aerodynamic drag reduction of high-speed train based on tail jet-flow control. Journal of the China Railway Society, 43(11), 38-46. https://doi.org/10.3969/j.issn.1001-8360.2021.11.005
Ito, M. (2000). Improvement to the aerodynamic characteristics of Shinkansen rolling stock.
Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit,
214(3), 135-143.
https://doi.org/10.1243/0954409001531261
Kim, H., Hu, Z. W., & Thompson, D. (2020). Numerical investigation of the effect of cavity flow on high-speed train pantograph aerodynamic noise.
Journal of Wind Engineering and Industrial Aerodynamics,
214, 104159.
https://doi.org/10.1016/j.jweia.2020.104159
Lee, Y., Rho, J., Kim, K. H., Lee, D. H., & Kwon, H. B. (2015). Experimental studies on the aerodynamic characteristics of a pantograph suitable for a high-speed train.
Proceedings of the Institution of Mechanical Engineering, Part F: Journal of Rail and Rapid Transit,
229, 136-149.
https://doi.org/10.1177/0954409713507561
Li, T., Qin, D., Zhou, N., Zhang, J. Y., Zhang, W. H. (2022). Numerical study on the aerodynamic acoustic scale effects for high-speed train body and pantograph.
Applied Acoustics,
196, 108886.
https://doi.org/10.1016/j.apacoust.2022.108886
Li, X. F., Zhou, D., Jia, L. R., & Yang, M. Z. (2018). Effects of yaw angle on the unsteady aerodynamic performance of the pantograph of a high-speed train under crosswind,
Journal of Wind and Industrial Aerodynamics,
182, 49-60.
https://doi.org/10.1016/j.jweia.2018.09.009
Li, X. F., Zhou, D., Jia, L. R., & Yang M. Z. (2023). Numerical study of the influence of dome shape on the unsteady aerodynamic performance of a high-speed train’s pantograph subjected to crosswind.
Journal of Traffic and Transportation Engineering,
10(1), 13-30.
https://doi.org/10.1016/j.jtte.2021.08.005
Liu, X., Deng, J., Zheng, Y., & Pan, G. F. (2013). Impact of aerodynamics of pantograph of a high-speed train on pantograph-catenary current collection.
Journal of Zhejiang University (Engineering Science), 47(3), 558-564.
https://doi.org/10.3785/j.issn.1008-973X.2013.03.024.
Meng, S., Meng, S., Wu, F., Li, X. L., & Zhou, D. (2021). Comparative analysis of the slipstream of different nose length on two trains passing each other.
Journal of Wind Engineering & Industrial Aerodynamics,
208, 104457.
https://doi.org/10.1016/j.jweia.2020.104457
Mitsumoji, T., Sueki, T., Yamazaki, N., Sato, Y., Ikeda, M., Takinami, R., Gejima, H., & Fukagata K. (2015). Aerodynamic noise reduction of a pantograph panhead by applying a flow control method.
Noise and Vibration Mitigation for Rail Transportation Systems, Notes on Numerical Fluid Mechanics and Multidisciplinary Design,
126, 515-522.
https://doi.org/10.1007/978-3-662-44832-8_60
Niu, J. Q., Liang, X. F., & Zhou, D. (2017). Aerodynamic impact of pantograph located on the high-speed train passing through a station.
Journal of Vibration Engineering 2017; 30(2), 333-340. https://doi.org/
10.16385/j.cnki.issn.1004-4523.2017.02.021
Niu, J. Q., Wang, Y. M., Zhang, L., & Yuan, Y. P. (2018). Numerical analysis of aerodynamic characteristics of high-speed train with different train noise length. International Journal of Heat and Mass Transfer, 127, 188-199. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.041
Niu, J. Q., Wang, Y. M., Liu, F. & Chen, Z. W. (2020). Comparative study on the effect of aerodynamic braking plates mounted at the inter-carriage region of a high-speed train with pantograph and air-conditioning unit for enhanced braking.
Journal of Wind Engineering & Industrial Aerodynamics,
206, 104360.
https://doi.org/10.1016/j.jweia.2020.104360
Satio, M., Mizushima, F., Wakabayashi, Y., Kurita, T., Nakajima, S., & Hirasawa, T. (2021). Development of new low-noise pantograph for high-speed trains.
Noise and Vibration Mitigation for Rail Transportation Systems, Notes on Numerical Fluid Mechanics and Multidisciplinary Design,
150, 81-89.
https://doi.org/10.1007/978-3-030-70289-2
Shur, M. L., Spalart, P. R., Strelets, M. Kh., & Travin, A. K. (2008). A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities.
International Journal of Heat and Fluid Flow,
29, 1638-1649.
https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
Sun, Z. K., Wang, T. T., & Wu, F. (2020). Numerical investigation of influence of pantograph parameters and train length on aerodynamic drag of high-speed train.
Journal of Central South University,
27, 1334-1350.
https://doi.org/10.1007/s11771-020-4370-6
Tan, C. D., Zhou, D., Chen, G., Sheridan, J., & Krajnović, S. (2020). Influence of marshalling length on the flow structure of a maglev train.
International Journal of Heat and Fluid Flow,
85, 108604.
https://doi.org/10.1016/j.ijheatfluidflow.2020.108604
Tan, X. M., Yang, Z. G., Tan, X. M., Wu, X. L., & Zhang, J. (2018). Vortex structure and aeroacoustic performance of the flow field of the pantograph. Journal of Sound and Vibration, 432, 17-32. https://doi.org/10.1016/j.jsv.2018.06.025
Tang, X., Zhou D. W., & Liang, X. F. (2015). Aerodynamic load on pantograph of high-speed train passing into and out tunnels.
Journal of Central South University (Science and Technology),
46(5), 1923-1928. https://doi.org/
10.11817/j.issn.1672-207.2015.05.047
Wang, J. B., Minelli, G., Dong, T. Y., Chen G., & Krajnović, S. (2019). The effect of bogie faring on the slipstream and wake flow of a high-speed train. An IDDES study.
Journal of Wind Engineering & Industrial Aerodynamics,
191, 183-202.
https://doi.org/10.1016/j.jweia.2019.06.010
Wang, J. B., Minelli, G., Zhang, Y., Zhang, J., Krajnović, S. & Gao, G. J. (2020). An improved delayed detached eddy simulation study of the bogie cavity length effects on the aerodynamic performance of a high-speed train.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,
234(12), 2386-2401.
https://doi.org/10.1177/09544062209076
Wang, Y. C., Yu, Y. Z., Gai, J., & Jiang, H. Y. (2022). Simulation analysis of aerodynamic characteristics of streamlined pantograph for high speed train.
Journal of Dalian Jiaotong University,
43 (1), 7-42.
https://doi.org/10.13291/j.cnki.djdxac.2022.01.007
Xia, C., Wang, H. F., Shan, X. Z., Yang, Z. G., & Li, Q. L. (2017). Effects of ground configurations on the slipstream and near wake of a high-speed train.
Journal of Wind Engineering & Industrial Aerodynamics, 168, 177-189.
https://doi.org/10.1016/j.jweia.2017.06.005
Xiao, C. H., Yang, M. Z., Tan, C. D., & Lu, Z. J. (2020). Effects of platform sinking height on the unsteady aerodynamic performance of high-speed train pantograph.
Journal of Wind Engineering and Industrial Aerodynamics,
204, 104284.
https://doi.org/10.1016/j.jweia.2020.104284
Yan, Y. Z., Xu, X. H., Wang, X. Z., Geng, H. S., & Huang, S. J. (2022). Simulation of optimization study on aerodynamic drag reduction of high-speed train pantograph,
Mechanics in Engineering,
44(5), 276-284. https://doi.org/
10.6052/1000-0879-21-372
Yao, Y., Sun, Z., Li, G., Prapamonthon, P., Cheng, G., & Yang, G. (2022). Numerical investigation on aerodynamic drag and noise of pantographs with modified structures.
Journal of Applied Fluid Mechanics,
15(2), 617-631.
https://doi.org/10.47176/jafm.15.02.32849
Yao, Y. F., Sun, Z. X., Liu, W., & Yang, G. W. (2020). Analysis of aerodynamic noise characteristics of pantograph in high-speed train.
Acta Scientiarum Naturalium Universitatis Pekinensis,
56(3), 385-398.
https://doi.org/10.13209/j.0479-8023.2020.014
Zhang, C. L., Liu, H. T., Zhou, X., Yang, C. H., & Xiao, Q. (2021). Reduction of drag and noise for pantograph rods with spanwise waviness structure. Noise and Vibration Control, 41(6), 126-133. https://doi.org/10.3969/j.issn.1006-1355.2021.06.021
Zhang, L., Yang, M. Z. & Liang, X. F. (2018). Experimental study on the effect of wind angle on pressure distribution of train streamlined zone and train aerodynamic forces,
Journal of Wind Engineering and Industrial Aerodynamics, 174, 330-343.
https://doi.org/10.1016/j.jweia.2018.01.024
Zhang, L., Zhang, J. Y., Li, T., & Zhang W. H. (2017). Research on unsteady aerodynamic characteristics of pantographs in different positions of high-speed trains.
Journal of Mechanical Engineering,
53(12), 147-155. https://doi.org/
10.3901/JME.2017.12.147