Akhlaghi, M., Asadbeigi, M., & Ghafoorian, F. (2023). Novel CFD and DMST dual method parametric study and optimization of a darrieus vertical axis wind turbine.
Journal of Applied Fluid Mechanics,
17(1), 205-218.
https://www.jafmonline.net/article_2337.html
Amet, E., Maître, T., Pellone, C., & Achard, J. L. (2009). 2D numerical simulations of blade-vortex interaction in a darrieus turbine.
Journal of Fluids Engineering,
131(11), 111103.
https://doi.org/10.1115/1.4000258
ANSYS Fluent user guide (2011). Ansys fluent theory guide. Ansys Inc., USA, 15317, 724-746.
Arun Prakash, J., Radhakrishnan, S. S., Ramavijay, N., & Vishnupriya, S. (2017). Experimental investigation of stepped aerofoil using propeller test rig.
IJRET: International Journal of Research in Engineering and Technology.
https://doi.org/10.15623/ijret.2014.0308033
Baxevanou, C. A., & Fidaros, D. K. (2008). Validation of numerical schemes and turbulence models combinations for transient flow around airfoil.
Engineering Applications of Computational Fluid Mechanics,
2(2), 208-221.
https://doi.org/10.1080/19942060.2008.11015222
Boroomand, M., & Hosseinverdi, S. (2009). Numerical investigation of turbulent flow around a stepped airfoil at high Reynolds number.
Fluids Engineering Division Summer Meeting.
https://doi.org/10.1115/FEDSM2009-78294
Bose Sumantraa, R., Chandramouli, S., Premsai T., P., Prithviraj, P., Mugundhan, V., & Velamati, R. K. (2014). Numerical analysis of effect of pitch angle on a small scale vertical axis wind turbine.
International Journal Of Renewable Energy Research,
4(4), 929–935.
https://doi.org/10.20508/ijrer.v4i4.1653.g6463
Boudis, A., Benzaoui, A., Oualli, H., Guerri, O., Bayeul-Lain, A. C., & Coutier-Delgosha, O. (2018). Energy extraction performance improvement of a flapping foil by the use of combined foil.
Journal of Applied Fluid Mechanics, 1651-1663.
https://doi.org/10.29252/jafm.11.06.29099
Cardoso Netto, D., Ramirez Gustavo, R., & Manzanares Filho, N. (2023). Surrogate-based design optimization of a h-darrieus wind turbine comparing classical response surface, artificial neural networks, and kriging.
Journal of Applied Fluid Mechanics,
16(4), 703-716.
https://doi.org/10.47176/jafm.16.04.1530
Danao, L. A., Qin, N., & Howell, R. (2012). A numerical study of blade thickness and camber effects on vertical axis wind turbines.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
226(7), 867-881.
https://doi.org/10.1177/0957650912454403
Kabir, A., Islam, M., Jahan, N., Akib, Y. M., & Mili, M. I. J. (2021). Numerical simulation and comparative study of aerodynamic performance of Kline Fogleman modified backward stepped airfoils and the NACA 4415 airfoil.
Bangladesh Maritime Journal (BMJ) Volume,
5, 2520-1840.
https://bsmrmu.edu.bd/public/files/econtents/6056f1d5c355f6-Numerical%20Simulation%20and%20Comparative%20Study%20of.pdf
Kozak, P. A., Vallverd, D., & Rempfer, D. (2016). Modeling vertical-axis wind-turbine performance: blade-element method versus finite volume approach.
Journal of Propulsion and Power,
32(3), 592-601.
http://dx.doi.org/10.2514/1.B35550
Lanzafame, R., Mauro, S., Messina, M., & Brusca, S. (2020). Development and validation of CFD 2D models for the simulation of micro H-Darrieus turbines subjected to high boundary layer instabilities.
Energies,
13(21), 5564.
https://doi.org/10.3390/en13215564
Li, Y., Yang, S., Feng, F., & Tagawa, K. (2023). A review on numerical simulation based on CFD technology of aerodynamic characteristics of straight-bladed vertical axis wind turbines.
Energy Reports,
9, 4360-4379.
https://doi.org/10.1016/j.egyr.2023.03.082
Lopez Mejia, O. D., Mejia, O. E., Escorcia, K. M., Suarez, F., & Laín, S. (2021). Comparison of sliding and overset mesh techniques in the simulation of a vertical axis turbine for hydrokinetic applications.
Processes,
9(11).
https://www.mdpi.com/2227-9717/9/11/1933
Ma, N., Lei, H., Han, Z., Zhou, D., Bao, Y., Zhang, K., Zhou, L., & Chen, C. (2018). Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio.
Energy,
150, 236-252.
https://www.sciencedirect.com/science/article/p ii/S0360544218303499
Manerikar, S. S., Damkale, S. R., Havaldar, S. N., Kulkarni, S. V., & Keskar, Y. A. (2021).
Horizontal axis wind turbines passive flow control methods: a review. IOP Conference Series: Materials Science and Engineering, I. O. P. Publishing.
https://doi.org/10.1088/1757-899X/1136/1/012022
McLaren, K., Tullis, S., & Ziada, S. (2012). Computational fluid dynamics simulation of the aerodynamics of a high solidity, small-scale vertical axis wind turbine.
Wind Energy,
15(3), 349-361.
https://doi.org/10.1002/we.472
Meana-Fernández, A., Solís-Gallego, I., Fernández Oro, J. M., Argüelles Díaz, K. M., & Velarde-Suárez, S. (2018). Parametrical evaluation of the aerodynamic performance of vertical axis wind turbines for the proposal of optimized designs.
Energy,
147, 504-517.
https://doi.org/https://doi.org/10.1016/j.energy.2018.01.062
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications.
AIAA Journal,
32(8), 1598-1605.
https://doi.org/10.2514/3.12149
Modi, F. N., & Gilke, N. R. (2018).
Computational analysis of various airfoil profile on the performance of h-Darrieus wind turbine. 2018 Ieee International Conference On System, Computation, Automation And Networking (Icscan), IEEE.
https://doi.org/10.1109/ICSCAN.2018.8541245
Moghimi, M., & Motawej, H. J. J. O. A. F. M. (2020). Comparison aerodynamic performance and power fluctuation between darrieus straight-bladed and gorlov vertical axis wind turbines.
Journal of Applied Fluid Mechanics,
13(5), 1623-1633.
https://doi.org/10.36884/jafm.13.05.30833
Mohammed, A. A., Ouakad, H. M., Sahin, A. Z., & Bahaidarah, H. M. S. (2019). Vertical axis wind turbine aerodynamics: summary and review of momentum models.
Journal of Energy Resources Technology,
141(5), 050801.
https://doi.org/10.1115/1.4042643
Mohan Kumar, P., Sivalingam, K., Lim, T.-C., Ramakrishna, S., & Wei, H. (2019). review on the evolution of darrieus vertical axis wind turbine: large wind turbines.
Clean Technologies,
1(1), 205-223.
https://www.mdpi.com/2571-8797/1/1/14
Qadri, M., Shahzad, A., Zhao, F., & Tang, H. (2019). An experimental investigation of a passively flapping foil in energy harvesting mode.
Journal of Applied Fluid Mechanics,
12(5), 1547-1561.
https://doi.org/10.29252/jafm.12.05.29648
Roh, S. C., & Kang, S. H. (2013). Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine.
Journal of Mechanical Science and Technology,
27(11), 3299-3307.
https://doi.org/10.1007/s12206-013-0852-x
Sagharichi, A., Maghrebi, M. J., & ArabGolarcheh, A. (2016). Variable pitch blades: An approach for improving performance of Darrieus wind turbine.
Journal of Renewable and Sustainable Energy,
8(5), 053305.
https://doi.org/10.1063/1.4964310
Sheldahl, R. E., & Klimas, P. C. (1981).
Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines (No. SAND-80-2114). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
https://www.osti.gov/biblio/6548367
Song, C., Wu, G., Zhu, W., & Zhang, X. (2020). Study on aerodynamic characteristics of Darrieus vertical axis wind turbines with different airfoil maximum thicknesses through computational fluid dynamics.
Arabian Journal for Science and Engineering,
45, 689-698.
https://doi.org/10.1007/s13369-019-04127-8
Storms, B. L., & Jang, C. S. (1994). Lift enhancement of an airfoil using a Gurney flap and vortex generators.
Journal of Aircraft,
31(3), 542-547.
https://doi.org/10.2514/3.46528
Subramanian, A., Yogesh, S. A., Sivanandan, H., Giri, A., Vasudevan, M., Mugundhan, V., & Velamati, R. K. (2017). Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model.
Energy,
133, 179-190.
https://www.sciencedirect.com/science/article/pii/S0360544217308757
Sun, X., Xu, Y., & Huang, D. (2019). Numerical simulation and research on improving aerodynamic performance of vertical axis wind turbine by co-flow jet.
Journal of Renewable and Sustainable Energy,
11(1).
https://doi.org/10.1063/1.5052378
Syawitri, T. P., Yao, Y., Yao, J., & Chandra, B. (2022). A review on the use of passive flow control devices as performance enhancement of lift-type vertical axis wind turbines.
Wiley Interdisciplinary Reviews: Energy and Environment,
11(4), e435.
https://doi.org/10.1002/wene.435
Truong, H. V. A., Dang, T. D., Vo, C. P., & Ahn, K. K. (2022). Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review.
Renewable and Sustainable Energy Reviews,
170, 112958.
https://doi.org/10.1016/j.rser.2022.112958
Wang, X., Luo, X., Zhuang, B., Yu, W., & Xu, H. (2011).
6-DOF numerical simulation of the vertical-axis water turbine. Fluids Engineering Division Summer Meeting.
https://doi.org/10.1115/AJK2011-22035
Wang, Y., Shen, S., Li, G., Huang, D., & Zheng, Z. (2018). Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes.
Renewable Energy,
126, 801-818.
https://www.sciencedirect.com/science/article/pii/S0960148118302398
Wekesa, D. W., Wang, C., Wei, Y., Kamau, J. N., & Danao, L. A. M. (2015). A numerical analysis of unsteady inflow wind for site specific vertical axis wind turbine: A case study for Marsabit and Garissa in Kenya.
Renewable Energy,
76, 648-661.
https://www.sciencedirect.com/science/article/pii/S0960148114008052
Winslow, J., Otsuka, H., Govindarajan, B., & Chopra, I. (2018). Basic understanding of airfoil characteristics at low reynolds numbers (104–105).
Journal of Aircraft,
55(3), 1050-1061.
https://doi.org/10.2514/1.C034415
Zhao, Z., Wang, D., Wang, T., Shen, W., Liu, H., & Chen, M. (2022). A review: Approaches for aerodynamic performance improvement of lift-type vertical axis wind turbine.
Sustainable Energy Technologies and Assessments,
49, 101789.
https://www.sciencedirect.com/science/article/pii/S2213138821008031
Zhao, Z., Wang, R., Shen, W., Wang, T., Xu, B., Zheng, Y., & Qian, S. (2018). Variable pitch approach for performance improving of straight-bladed VAWT at rated tip speed ratio.
Applied Sciences,
8(6).
https://www.mdpi.com/2076-3417/8/6/957