Research on the Flow and Drag Reduction Characteristics of Surfaces with Biomimetic Fitting Structure

Document Type : Regular Article

Authors

1 College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou, 310018, China

2 Zhejiang Engineering Research Center of Fluid Equipment and Measurement and Control Technology, Hangzhou, 310018, China

Abstract

To reduce the fluid resistance on the surface of flow-through components and improve energy utilization efficiency, a biomimetic fitting structure model is constructed based on the ridge-like features of beluga skin. The SST k-ω model is employed to numerically simulate the drag reduction characteristics of three biomimetic structures (fitting structure, V-shaped structure, and arc structure) included in the design. The variations of the fitting structure’s viscous resistance and pressure drop resistance with different widths and depths are compared. The drag reduction mechanism of the fitting structure surface is studied based on the pressure stress, velocity field, and shear stress. The results demonstrate that the fitting structure exhibits the best drag reduction performance. The fitting structure with a width of 30 mm and a depth of 0.7 mm achieves an optimal drag reduction effect of 4.18%. The fitting structure exhibits a large low shear stress region, which increases the thickness of the bottom boundary layer, thereby reducing surface velocity and viscous resistance.

Keywords

Main Subjects


Asadzadeh, H., Moosavi, A., & Etemadi, A. (2019). Numerical simulation of drag reduction in microgrooved substrates using lattice-boltzmann method. Journal of Fluids Engineering, 141(7), 1-47. https://doi.org/10.1115/1.4042888.
Bixler, G. D., & Bhushan, B. (2013). Shark skin inspired low-drag microstructured surfaces in closed channel flow. Journal of Colloid and Interface Science, 393, 384-396. https://doi.org/10.1016/j.jcis.2012.10.061.
Chae, S., Lee, S., Kim, J., & Lee, J. H. (2019). Adaptive-passive control of flow over a sphere for drag reduction. Physics of Fluids, 31(1), 015107. https://doi.org/10.1063/1.5063908.
Chen, S. T., Yang, L. C., Zhao, W. W., & Wan, D. C. (2023). Wall-modeled large eddy simulation for the flows around an axisymmetric body of revolution. Journal of Hydrodynamics, 35(2), 199-209. https://doi.org/10.1007/s42241-023-0026-y.
Deng, F. Q., Cao, C., Xu, L. H., & Chi, Y. (2022). Interfacial bond characteristics of polypropylene fiber in steel/polypropylene blended fiber reinforced cementitious composite. Construction and Building Materials, 341, 127897. https://doi.org/10.1016/j.conbuildmat.2022.127897.
Desai, S., Prakash K, V., Kulkarni, V., & Gadgil, H. (2020). Universal scaling parameter for a counter jet drag reduction technique in supersonic flows. Physics of Fluids, 32(3), 036105. https://doi.org/10.1063/1.5140029.
Deshpande, R., Kidanemariam, A. G., & Marusic, I. (2024). Pressure drag reduction via imposition of spanwise wall oscillations on a rough wall. Journal of Fluid Mechanics, 979, A21. https://doi.org/10.1017/jfm.2023.1062.
Gu, Y. Q., Ma, L. B., Yan, M. H., He, C. D., Zhang, J. J., Mou, J. G., Wu, D. H., & Ren, Y. (2022a). Strategies for improving friction behavior based on carbon nanotube additive materials. Tribology International, 176, 107875. https://doi.org/10.1016/j.triboint.2022.107875.
Gu, Y. Q., Zhang, J. J., Yu, S. W., Mou, C. Q., Li, Z., He, C. D., Wu, D. H., Mou, J. G., & Ren, Y. (2022b). Unsteady numerical simulation method of hydrofoil surface cavitation. International Journal of Mechanical Sciences, 228, 107490. https://doi.org/10.1016/j.ijmecsci.2022.107490.
Gu, Y. Q., Ma, L. B., Yu, S. W., Yan, M. H., Wu, D. H., & Mou, J. G. (2023a). Surface cavitation flow characterization of jet hydrofoils based on vortex identification method. Physics of Fluids, 35(1), 012112. https://doi.org/10.1063/5.0126564.
Gu, Y. Q., Yin, Z. F., Yu, S. W., He, C. D., Wang, W. T., Zhang, J. J., Wu, D. H., Mou, J. A., & Ren, Y. (2023b). Suppression of unsteady partial cavitation by a bionic jet. International Journal of Multiphase Flow, 164, 104466. https://doi.org/10.1016/j.ijmultiphaseflow.2023.104466.
Li, F., Zhao, G., & Liu, W. X. (2017). Research on drag reduction performance of turbulent boundary layer on bionic jet surface. Part M: Journal of Engineering for the Maritime Environment, 231(1), 258-270. https://doi.org/10.1177/1475090216642463.
Liu, G. J., Yuan, Z. C., Qiu, Z. Z., Feng, S. W., Xie, Y. C., Leng, D. X., & Tian, X. J. (2020). A brief review of bio-inspired surface technology and application toward underwater drag reduction. Ocean Engineering, 199, 106962. https://doi.org/10.1016/j.oceaneng.2020.106962.
Liu, Z. M., Chen, R., Tang, Z. Q., Tian, Q., Fang, Y. C., Li, P. J., Li, L., & Pang, Y. (2023). Drag reduction performance of triangular (v-groove) riblets with different adjacent height ratios. Journal of Applied Fluid Mechanics, 16(4), 671-684. https://doi.org/10.47176/jafm.16.04.1532.
Ma, J. W., Zhang, H., Ye, T., Wang, S. H. Z., Yang, Z. B., & Jia, Z. Y. (2024). New method of continuous-wave laser ablation for processing microgroove with variable cross-section. Optics & Laser Technology, 170, 110292. https://doi.org/10.1016/j.optlastec.2023.110292.
Mele, B. (2022). Riblet drag reduction modeling and simulation. Fluids, 7(7), 249. https://doi.org/10.3390/fluids7070249.
Meng, F., Liu, B., Zeng, Y., & Wu, W. (2016). Geometric characterization of fast shark shield scale structures. Journal of Plasticity Engineering, 23(02), 143-147. https://doi.org/10.3969/j.issn.1007-2012.2016.02.025.
Shoemaker, P. A., & Ridgway, S. H. (1991). Cutaneous ridges in odontocetes. Marine Mammal Science, 7, 66-74. https://doi.org/10.1111/J.1748-7692.1991.TB00551.X.
Tang, J., Liu, Y. Y., & Yan, Y. T. (2022). Drag reduction characteristics of bionic non-smooth surfaces for underwater vehicles. Journal of Military Engineering, 43(05), 1135-1143. https://doi.org/10.12382/bgxb.2021.0204.
Wainwright, D. K., Fish, F. E., Ingersoll, S., Williams, T. M., St Leger, J., Smits, A. J., & Lauder, G. V. (2019). How smooth is a dolphin? The ridged skin of odontocetes. Biology Letters, 15(7), 103. https://doi.org/10.1098/rsbl.2019.0103.
Wu, T., Chen, W., Zhao, A. G., He, P., & Chen, H. (2020). A comprehensive investigation on micro-structured surfaces for underwater drag reduction. Ocean Engineering, 218, 107902. https://doi.org/10.1016/j.oceaneng.2020.107902.
Xie, L., Jiang, L., Meng, F., Li, Q., Wen, J., & Hu, H. (2023). Development and performance of a gelatin-based bio-polysaccharide drag reduction coating. Physics of Fluids, 35(5), 053112. https://doi.org/10.1063/5.0149281.
Yang, Q., Zhang, Z. P., Qi, Y. H., & Zhang, H. Y. (2020). Influence of phenylmethylsilicone oil on anti-fouling and drag-reduction performance of silicone composite coatings. Coatings, 10(12), 1239. https://doi.org/10.3390/coatings10121239.
Yu, Q. (2021). Rewiew of drag reduction on ribs. International Core Journal of Engineering, 7(5), 34-37. https://doi.org/10.6919/ICJE.202105_7(5).0010.