Investigating Rising Bubbles in Air-nanofluid Two-phase Flow: A Vertical Channel Simulation Approach

Document Type : Regular Article

Authors

1 ENERGARID Laboratory, Tahri Mohamed University of Bechar, P.O.B. 417, Algeria

2 Energy and Environment Laboratory, Department of Mechanical Engineering, Institute of Technology, University Center Salhi Ahmed Naama (Ctr. Univ. Naama), P.O. Box 66, Naama 45000, Algeria

3 College of Technical Engineering, National University of Science and Technology, Dhi Qar, 64001, Iraq

4 Division of Advanced Nano Material Technologies, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq

Abstract

The study analyzes the unique behavior of two-phase flows when incorporating nanofluids containing aluminum trioxide (Al2O3) and copper (Cu) nanoparticles in a vertical channel. The main goal is to investigate the behavior of air-nanofluid mixtures in this setting, with potential implications for industrial and exploration applications. Research in this area could provide valuable insights into the dynamics of these flows and their impact on heat transfer, fluid dynamics, and material science. This study includes an analysis of upwelling dynamics, the effect of fluid characteristics on bubble growth, and the system's thermal efficiency. Using numerical and quantitative visualization techniques, we seek to understand the behavior of these particles at the interface between the liquid and gas phases by integrating Al2O3 and Cu nanoparticles into the VOF approach. Because of their superior thermal conductivity, copper nanoparticles have a higher volumetric density and provide more efficient heat transfer, leading to quick and efficient thermal dissipation. Smaller nanoparticles offer an increased surface area-to-volume ratio, which improves heat transfer capabilities and ensures uniform heat dissipation throughout the material. Consequently, copper nanoparticles emerge as the preferred choice for applications necessitating high thermal transfer and optimal performance. These results significantly impact the design of more efficient heat exchangers and optimize recovery techniques by elucidating the interactions between these nanoparticles and the surrounding fluids. Furthermore, the selection of smaller copper nanoparticles further amplifies thermal transfer, maximizing performance across diverse applications.

Keywords

Main Subjects


Agarwal, S. S., Kumar, K., Chandra, L., & Ghosh, P. (2022). Improved wake velocity distribution behind a rising bubble for isothermal and thermally stratified liquid layers. Journal of Heat Transfer, 144(7), 073701. https://doi.org/10.1115/1.4054413
Al-Rashed, A. A., Kalidasan, K., Kolsi, L., Borjini, M. N., & Kanna, P. R. (2017). Three-dimensional natural convection of CNT-water nanofluid confined in an inclined enclosure with Ahmed body. Journal of Thermal Science and Technology, 12(1), JTST0002-JTST0002. https://doi.org/10.1299/jtst.2017jtst0002
Ambrosio, L., & Soner, H. M. (1996). Level set approach to mean curvature flow in arbitrary codimension. Journal of Differential Geometry, 43(4), 693-737.
Battistella, A., van Schijndel, S. J. G., Baltussen, M. W., Roghair, I., & van Sint Annaland, M. (2020). On the terminal velocity of single bubbles rising in non-Newtonian power-law liquids. Journal of Non-Newtonian Fluid Mechanics, 278, 104249. https://doi.org/10.1016/j.jnnfm.2020.104249
Boursas, A., Salmi, M., Lorenzini, G., Ahmad, H., Menni, Y., & Fridja, D. (2021). Enhanced heat transfer by oil/multi-walled carbon nano-tubes nanofluid. Annales de Chimie Science des Materiaux, 45(2), 93-103. https://doi.org/10.18280/acsm.450201
Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100(2), 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y  
Chen, P., Li, Y., Han, J., Jing, L., Zhang, Z., & Li, Y. (2023). Hydrodynamics of fluidized bed flotation column with a homogeneous binary mixture of steel balls. Powder Technology, 429, 118920. https://doi.org/10.1016/j.powtec.2023.118920
Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab.(ANL), Argonne, IL (United States).
Crha, J., Basařová, P., & Ruzicka, M. C. (2023). CFD simulation of a small bubble motion in 3D flow domain: effect of liquid density, viscosity and surface tension. Chemical Papers, 77(7), 3979-3992. https://doi.org/10.1007/s11696-023-02758-8
Dai, B., Cao, Y., Zhou, X., Liu, S., Fu, R., Li, C., & Wang, D. (2024a). Exergy, carbon footprint and cost lifecycle evaluation of cascade mechanical subcooling CO2 commercial refrigeration system in China. Journal of Cleaner Production434, 140186. https://doi.org/10.1016/j.jclepro.2023.140186
Dai, B., Wang, Q., Liu, S., Zhang, J., Wang, Y., Kong, Z., Chen, Y., & Wang, D. (2024b). Multi-objective optimization analysis of combined heating and cooling transcritical CO2 system integrated with mechanical subcooling utilizing hydrocarbon mixture based on machine learning. Energy Conversion and Management301, 118057. https://doi.org/10.1016/j.enconman.2023.118057
Dai, B., Wu, T., Liu, S., Qi, H., Zhang, P., Wang, D., & Wang, X. (2024c). Flow boiling heat transfer characteristics of zeotropic mixture CO2/R152a with large temperature glide in a 2 mm horizontal tube. International Journal of Heat and Mass Transfer218, 124779. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124779
Ghachem, K., Hussein, A. K., Kolsi, L., & Younis, O. (2021). CNT–water nanofluid magneto-convective heat transfer in a cubical cavity equipped with perforated partition. The European Physical Journal Plus, 136, 1-22. https://doi.org/10.1140/epjp/s13360-021-01387-y
Gopala, V. R., & Van Wachem, B. G. (2008). Volume of fluid methods for immiscible-fluid and free-surface flows. Chemical Engineering Journal, 141(1-3), 204-221. https://doi.org/10.1016/j.cej.2007.12.035  
Hammid, S., Naima, K., Alqahtani, S., Alshehery, S., Oudah, K. H., Ikumapayi, O. M., & Menni, Y. (2024). Laminar rarefied flow analysis in a microchannel with H2O-Cu nanofluid: A thermal lattice Boltzmann study. Modern Physics Letters B, 38(03), 2450006. https://doi.org/10.1142/S0217984924500064
Han, W., Zhen-Yu, Z., Yong-Ming, Y., & Hui-Sheng, Z. (2010). Surface tension effects on the behaviour of a rising bubble driven by buoyancy force. Chinese Physics B, 19(2), 026801. https://doi.org/10.1088/1674-1056/19/2/026801
Hassan, N. M. S., Khan, M. M. K., Rasul, M. G., & Rackemann, D. W. (2010). Bubble rise velocity and trajectory in xanthan gum crystal suspension. Applied Rheology, 20(6), 65102. https://doi.org/10.3933/applrheol-20-65102  
Hemmati-Sarapardeh, A., Varamesh, A., Husein, M. M., & Karan, K. (2018). On the evaluation of the viscosity of nanofluid systems: Modeling and data assessment. Renewable and Sustainable Energy Reviews, 81, 313-329. https://doi.org/10.1016/j.rser.2017.07.049
Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., & Tobiska, L. (2009). Quantitative benchmark computations of two‐dimensional bubble dynamics. International Journal for Numerical Methods in Fluids, 60(11), 1259-1288. https://doi.org/10.1002/fld.1934  
Kothe, D. B. (1998). Computational fluid dynamics with moving boundaries. AIAA Journal, 36(2), 303-304. https://doi.org/10.2514/2.7524  
Leung, C., Adler, J., Shapley, N., Langrish, T. A., & Glasser, B. J. (2023). Fluidized bed drying of supported Catalysts: Effect of process parameters. Chemical Engineering Science, 282, 119280. https://doi.org/10.1016/j.ces.2023.119280  
Liao, B., Yang, Z., & Chen, S. (2022). Numerical investigation of two in-line two-dimensional bubbles rising in a two-dimensional quiescent ambient liquid by a conservative phase-field lattice boltzmann method. Discrete Dynamics in Nature and Society, 2022. https://doi.org/10.1155/2022/4090324
Liu, Z., Wang, H., Sun, S., Xu, L., & Yang, W. (2023). Investigation of wetting and drying process in a spout-fluid bed using acoustic sensor and electrical capacitance tomography. Chemical Engineering Science, 281, 119160. https://doi.org/10.1016/j.ces.2023.119160  
Ma, D., Liu, M., Zu, Y., & Tang, C. (2012). Two-dimensional volume of fluid simulation studies on single bubble formation and dynamics in bubble columns. Chemical Engineering Science, 72, 61-77. https://doi.org/10.1016/j.ces.2012.01.013
Mahammedi, A., Ameur, H., Menni, Y., & Medjahed, D. M. (2021). Numerical study of turbulent flows and convective heat transfer of Al2O3-water nanofluids in a circular tube. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 77(2), 1-12. https://doi.org/10.37934/arfmts.77.2.112
Maouedj, R., Menni, Y., Inc, M., Chu, Y. M., Ameur, H., & Lorenzini, G. (2021). Simulating the turbulent hydrothermal behavior of Oil/MWCNT nanofluid in a solar channel heat exchanger equipped with vortex generators. CMES-Computer Modeling in Engineering & Sciences, 126(3), 855-889. https://doi.org/10.32604/cmes.2021.014524  
Mei, L., Chen, X., Liu, B., Zhang, Z., Hu, T., Liang, J., ... & Wang, L. (2023). Experimental study on bubble dynamics and mass transfer characteristics of coaxial bubbles in petroleum-based liquids. ACS Omega, 8(19), 17159-17170. https://doi.org/10.1021/acsomega.3c01526  
Menni, Y., Chamkha, A. J., Ghazvini, M., Ahmadi, M. H., Ameur, H., Issakhov, A., & Inc, M. (2020). Enhancement of the turbulent convective heat transfer in channels through the baffling technique and oil/multiwalled carbon nanotube nanofluids. Numerical Heat Transfer, Part A: Applications, 79(4), 311-351. https://doi.org/10.1080/10407782.2020.1842846
Menni, Y., Chamkha, A. J., Zidani, C., & Benyoucef, B. (2019). Heat and nanofluid transfer in baffled channels of different outlet models. Mathematical Modelling of Engineering Problems, 6(1), 21-28. https://doi.org/10.18280/mmep.060103
Merabtene, T., Garoosi, F., & Mahdi, T. F. (2023). Numerical modeling of liquid spills from the damaged container and collision of two rising bubbles in partially filled enclosure using modified Volume-of-Fluid (VOF) method. Engineering Analysis with Boundary Elements, 154, 83-121. https://doi.org/10.1016/j.enganabound.2023.05.037
Mundhra, R., Lakkaraju, R., Das, P. K., Pakhomov, M. A., & Lobanov, P. D. (2023). Effect of wall proximity and surface tension on a single bubble rising near a vertical wall. Water, 15(8), 1567. https://doi.org/10.3390/w15081567
Ningegowda, B. M., & Premachandran, B. (2014). A coupled level set and volume of fluid method with multi-directional advection algorithms for two-phase flows with and without phase change. International Journal of Heat and Mass Transfer, 79, 532-550. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.039   
Osher, S., Fedkiw, R., & Piechor, K. (2004). Level set methods and dynamic implicit surfaces. Applied Mechanics Reviews, 57(3), B15-B16. https://doi.org/10.1115/1.1760521
Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 11(2), 151-170. https://doi.org/10.1080/08916159808946559
Pang, M., Lei, Y., & Hu, B. (2023). Experimental Study of the Rising Behavior of a Single Bubble in Shear-shinning Fluids, Recent Patents on Engineering, 18, e150523216902. https://doi.org/10.2174/1872212118666230515110322
Rahimi, A., Kasaeipoor, A., Hasani Malekshah, E., & Kolsi, L. (2018). Lattice boltzmann simulation of free convection in nanofluid filled cavity with partially active walls–entropy generation and heatline visualization. International Journal of Numerical Methods for Heat & Fluid Flow, 28(10), 2254-2283. https://doi.org/10.1108/HFF-06-2017-0229
Rudyak, V. Y., & Minakov, A. V. (2018). Thermophysical properties of nanofluids. The European Physical Journal E, 41, 1-12. https://doi.org/10.1140/epje/i2018-11616-9
Seropian, G., Higginbotham, K., Kennedy, B. M., Schaefer, L. N., Walter, T. R., & Soldati, A. (2023). The effect of mechanical shaking on the rising velocity of bubbles in high‐viscosity shear‐thinning fluids. Journal of Geophysical Research: Solid Earth, e2022JB025741. https://doi.org/10.1029/2022JB025741
Sethian, J. A. (1999). Level set methods and fast marching methods : Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge Monograph on Applied and Computational Mathematics.
Shyy, W., Francois, M., Udaykumar, H. S., N’dri and, N., & Tran-Son-Tay, R. (2001). Moving boundaries in micro-scale biofluid dynamics. Applied Mechanics Reviews, 54(5), 405-454. https://doi.org/10.1115/1.1403025  
Soria-Verdugo, A., Guil-Pedrosa, J. F., Hernández-Jiménez, F., García-Gutiérrez, L. M., Cano-Pleite, E., & García-Hernando, N. (2023). Experimental study of the discharge process of a thermal energy storage system based on granular material operated as a fluidized or confined bed. Journal of Energy Storage, 73, 109173. https://doi.org/10.1016/j.est.2023.109173
Vaishnavi, G. S., Ramarajan, J., & Jayavel, S. (2023). Numerical studies of bubble formation dynamics in gas-liquid interaction using Volume of Fluid (VOF) method. Thermal Science and Engineering Progress, 39, 101718. https://doi.org/10.1016/j.tsep.2023.101718
Verma, A., Babu, R., & Das, M. K. (2017). Modelling of a single bubble rising in a liquid column. In A. Saha, D. Das, R. Srivastava, P. Panigrahi & K. Muralidhar (Eds.), Fluid Mechanics and Fluid Power – Contemporary Research. Lecture Notes in Mechanical Engineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2743-4_100
Watanabe, T., & Ebihara, K. (2003). Numerical simulation of coalescence and breakup of rising droplets. Computers & Fluids, 32(6), 823-834. https://doi.org/10.1016/S0045-7930(02)00022-1
Xue, T., Xu, L., & Wang, Q. (2019). Measurement of seawater surface tension coefficient based on bubble rising behavior. Measurement, 138, 332-340. https://doi.org/10.1016/j.measurement.2019.02.047
Yan, J., Lin, S., Bazilevs, Y., & Wagner, G. (2019). Isogeometric analysis of multi-phase flows with surface tension and with application to dynamics of rising bubbles. Computers & Fluids, 179, 777-789. https://doi.org/10.1016/j.compfluid.2018.04.017
Zhao, W., Liang, J., Sun, M., & Wang, Z. (2021). Investigation on the effect of convective outflow boundary condition on the bubbles growth, rising and breakup dynamics of nucleate boiling. International Journal of Thermal Sciences, 167, 106877. https://doi.org/10.1016/j.ijthermalsci.2021.106877