Cuiwei, L., Zhaoxue, C., Jiaxuan, Z., Yebin, P., Pengfei, D., Luling, L. I., Hongchao, Y., & Yuxing, L. I. (2022). Stratification in pipelines with hydrogen into natural gases.
Journal of China University of Petroleum (Edition of Natural Science),
46(5), 153-161.
http://doi.org/10.3969/j.issn.1673-5005.2022.05.017
Dadfarnia, M., Sofronis, P., Brouwer, J., & Sosa, S. (2019). Assessment of resistance to fatigue crack growth of natural gas line pipe steels carrying gas mixed with hydrogen.
International Journal of Hydrogen Energy,
44(21), 10808-10822.
http://doi.org/10.1016/j.ijhydene.2019.02.216
Fang, L., Hongwei, Y., Yinshan, H., Yanjian, P., & Yuxia, Y. (2023). Effect of hydrogen-blending ratio of natural gas on performance of terminal gas equipment.
Low-Carbon Chemistry and Chemical Engineering,
48(2), 174-178.
http://doi.org/10.3969/j.issn.1001-9219.2023.02.023
Hongjun, Z., Junwen, C., Huazhong, S. U., Tang, T., & Shan, H. E. (2022). Numerical investigation of the natural gas-hydrogen mixture stratification process in an undulating pipeline.
Journal of Southwest Petroleum University (Science & Technology Edition),
44(6), 132-140.
http://doi.org/10.11885/j.issn.1674-5086.2022.06.20.02
Hongjun, Z., Junwen, C., Tang, T., Xiaoyong, T., & Shan, H. E. (2023). Numerical simulation of the process of injecting hydrogen in natural gas pipeline.
Natural Gas and Oil,
41(2), 22-32.
http://doi.org/10.3969/j.issn.1006-5539.2023.02.004
Liu, Q., Liu, Y., Li, S., Xu, H., Liang, G., Sun, C., & Sun, J. (2022). Analysis of the static mixer effect on natural gas mixing process in a pipeline.
Flow Measurement and Instrumentation,
85, 102146.
http://doi.org/10.1016/j.flowmeasinst.2022.102146
Liu, Y., Rao, A., Ma, F., Li, X., Wang, J., & Xiao, Q. (2023). Investigation on mixing characteristics of hydrogen and natural gas fuel based on SMX static mixer.
Chemical Engineering Research and Design,
197, 738-749.
http://doi.org/10.1016/j.cherd.2023.07.040
Mingxing, S. (2012). The CFD Numerical Simulation of Rapid Gas-gas Mixing [Master Thesis, East China University of Science and Technology], Shanghai.
Wang, C., Zhang, J., Liu, C., Hu, Q., Zhang, R., Xu, X., Yang, H., Ning, Y., & Li, Y. (2023). Study on hydrogen embrittlement susceptibility of X80 steel through in-situ gaseous hydrogen permeation and slow strain rate tensile tests.
International Journal of Hydrogen Energy,
48(1), 243-256.
http://doi.org/10.1016/j.ijhydene.2022.09.228
Wei, H., Duan, B., Shi, X., Gao, R., Hua, Z., Qiu, S., & Zhao, Y. (2023). Influence of hydrogen in natural gas mixed hydrogen environment on mechanical properties of X80 pipeline steel.
International Journal of Hydrogen Energy.
http://doi.org/10.1016/j.ijhydene.2023.09.138
Yongwei, A., Chen, S., Shouhu, J., Guanwei, J., Weiqing, X., Wei, L., Liang, Z., & Maolin, C. (2022). Hydrogen concentration distribution in flow of hydrogen blended to natural gas in pipeline.
Mechanics in Engineering,
44(04), 767-775.
http://doi.org/10.6052/1000-0879-22-381
Yue, S. U., Jingfa, L. I., Bo, Y. U., Yanlin, Z., Jianli, L. I., & Dongxu, H. (2023). Simulation study on the mixing of hydrogen and natural gas in static mixers.
Natural Gas Industry,
43(3), 113-122.
http://doi.org/10.3787/j.issn.1000-0976.2023.03.012
Yuxin, L. I., Rui, Z., Cuiwei, L., Cailin, W., Hongchao, Y., Qihui, H. U., Jiaxuan, Z., Xiusai, X. U., & Huimin, Z. (2022). Hydrogen embrittlement behavior of typical hydrogen-blended natural gas pipeline steel.
Oil & Gas Storage and Transportation,
41(6), 732-742.
http://doi.org/10.6047/j.issn.1000-8241.2022.06.015
Zhen, H., Chuang, L., Yanbing, Z., Xianming, Y., & Xiaodong, C. (2021). Feasibility analysis of natural gas mixed with hydrogen in my country.
Yunnan Chemical Technology,
48(10), 94-96.
http://doi.org/10.3969/j.issn.1004-275X.2021.10.28