Study of the Thermal Buoyancy on the Smoke Flow in Tunnel Fires under the Coupled Effects of the Longitudinal Air-flow and the Tunnel Slope

Document Type : Regular Article

Authors

LETTM, Faculty of Sciences of Tunis, El Manar University, 2092 Tunis, Tunisia

Abstract

To understand the stratification of the smoke layer in a road tunnel, numerical simulations are employed to model tunnel fires with varying heat release rates. The different simulations cases are carried out with FDS (Fire dynamic simulations). These simulations are conducted to examine the influence of tunnel slope and longitudinal airflow on the smoke stratification along the downstream side of tunnel. The aim is to explore the relationship between longitudinal airflow and temperature ratio taking into account the tunnel slope. As a result, a quantitative analysis, based on Newman's theory, is conducted to assess the clarity of the smoke layer stratification, a Froude number (Fr = 0.63) is obtained. The slopes in tunnels can have a substantial impact on smoke flow during a fire, primarily driven by thermal buoyancy and the stack effect. With a slope less than 1.5°, the stratification improves. Similarly, clear stratification occurs when the longitudinal airflow is less than 1 m/s. However, a balance between inertia force and buoyancy force is crucial for maintaining clear stratification. Increasing both the longitudinal airflow and the tunnel slope serves to disturb the stratification of the smoke layer.

Keywords

Main Subjects


Atkinson, G. T., & Wu, Y. (1996). Smoke control in sloping tunnels. Fire Safety Journal, 27, 335–341. https://doi.org/10.1016/S0379-7112(96)00061-6
Chow, W. K., Gao, Y., Zhao, J. H., Dang, J. F., & Chow, N. C. L. (2016). A study on tilted tunnel fire under natural ventilation. Fire Safety Journal, 81, 44–57. https://doi.org/10.1016/j.firesaf.2016.01.014
Fan, C., Zhang, L., Jiao, S., Yang, Z., Li, M., & Liu, X. (2018). Smoke spread characteristics inside a tunnel with natural ventilation under a strong environmental wind. Tunnelling and Underground Space Technology, 82, 99–110. https://doi.org/10.1016/j.tust.2018.08.004
Guo, Y., Yuan, Z., Yuan, Y., Cao, X., & Zhao, P. (2021). Numerical simulation of smoke stratification in tunnel fires under longitudinal Velocities. Underground Space, 6, 163-172. https://doi.org/10.1016/j.undsp.2019.11.001
Gwon Hyun, K., Seung Ryul, K., & Hong Sun, R. (2010). An experimental study on the effect of slope on the critical velocity in tunnel fires. Journal of Fire Sciences, 28, 27–47. https://doi.org/10.1177/0734904109106547
Haddad, R. K., Zulkifli, R., Maluk, C., & Harun, Z. (2020). Experimental investigation on the influences of different horizontal fire locations on smoke temperature stratification under tunnel ceiling. Journal of Applied Fluid Mechanics, 13(4), 1289-1298.
Han, J., Liu, F., Fei Wang, F., Weng, M., & Wang, J. (2020). Study on the smoke movement and downstream temperature distribution in a sloping tunnel with one closed portal. International Journal of Thermal Sciences, 149, 106-165. https://doi.org/10.1016/j.ijthermalsci.2019.106165
Hu, L. H, Fong, N. K., Yang, L. Z., Chow, W. K., Li, Y. Z., & Huo, R. (2007). Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel: fire dynamics simulator comparisons with measured data. Journal of Hazardous Materials, 140, 293–298. https://doi.org/10.1016/j.jhazmat.2006.08.075
Hu, L. H., Chen, L. F., Wu, L., Li, Y. F., Zhang, J. Y., & Meng, N. (2013). An experimental investigation and correlation on buoyant gas temperature below ceiling in a slopping tunnel fire. Applied Thermal Engineering, 51, 246–254 https://doi.org/10.1016/j.applthermaleng.2012.07.043
Huang, Y., Li, Y., Dong, B., Li, J., & Liang, Q. (2018). Numerical investigation on the maximum ceiling temperature and longitudinal decay in a sealing tunnel fire. Tunnelling and Underground Space Technology, 72, 120–130. https://doi.org/10.1016/j.tust.2017.11.021
Ji, J., Gao, Z., Fan, C., & Sun, J. (2013). Large eddy simulation of stack effect on natural smoke exhausting effect in urban road tunnel fires. International Journal of Heat and Mass Transfer, 66, 531-542. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.057
Ji, J., Guo, F., Gao, Z., & Zhu, J. (2018). Effects of ambient pressure on transport characteristics of thermal-driven smoke flow in a tunnel. International Journal of Thermal Sciences, 125, 210–217. https://doi.org/10.1016/j.ijthermalsci.2017.11.027
Kalech, B., Bouterra, M., & ElCafsi, A. (2020). Numerical analysis of smoke flow under the effect of longitudinal airflow in a tunnel fire. Fire and Materials, 44, 1033–1043. https://doi.org/10.1002/fam.2902
Kalech, B., Bouterra, M., ElCafsi, A., & Belghith, A. (2013). Control of smoke flow in a tunnel. Journal of Applied Fluid Mechanics, 6(1), 49-60 https://doi.org/10.36884/jafm.6.01.19481
Ko, G. H., Kim, H. S. R., & Ryou, S. (2010). An experimental study on the effect of slope on the critical velocity in tunnel fires. Journal of Fire Sciences, 28(1), 27–47. https://doi.org/10.1177/0734904109106547
Li, Y. Z., Lei, B., & Ingason, H. (2011). The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires. Fire Safety Journal, 46, 204–210. https://doi.org/10.1016/j.firesaf.2011.02.002
McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., & Overholt, K. (2017a). Fire dynamics technical reference guide: validation. NIST Special Publication, 1018(3). https://pages.nist.gov/fds-smv/
McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., & Overholt, K. (2017b). Fire Dynamics Simulator: Technical Reference Guide, Volume 1: Mathematical Model. NIST Special Publication, 1018(1). https://pages.nist.gov/fds-smv/
McGrattan, K., Hostikka, S., McDermott, R., Floyd, J.,Weinschenk, C., & Overholt, K. (2017c). fire dynamics simulator: User's guide. NIST Special Publication, 1019. https://pages.nist.gov/fds-smv/
Newman, J. S. (1984). Experimental evaluation of fire-induced stratification. Combustion and Flame, 57, 33–39. https://doi.org/10.1016/0010-2180(84)90135-4
Nyman, H., & Ingason, H. (2012). Temperature stratification in tunnels. Fire Safety Journal, 48, 30–37. https://doi.org/10.1016/j.firesaf.2011.11.002
Savalanpour, H., Farhanieh, B., & Afshin, H. (2021). Effects of false-ceiling oncritical ventilation velocityand maximum gas temperature in tunnel fires. Journal of Applied Fluid Mechanics, 14(2), 473-483. https://doi.org/10.47176/jafm.14.02.31382
Wan, H., Gao, Z., Han, J., Ji, J., Ye, M., & Zhang, Y. (2019). A numerical study on smoke back-layering length and inlet air velocity of fires in an inclined tunnel under natural ventilation with a vertical shaft. International Journal of Thermal Sciences, 138, 293–303. https://doi.org/10.1016/j.ijthermalsci.2019.01.004
Weng, M. C., Lu, X. L., Liu, F., & Du, C. X. (2016). Study on the critical velocity in a sloping tunnel fire under longitudinal ventilation. Applied Thermal Engineering, 94, 422–434. https://doi.org/10.1016/j.applthermaleng.2015.10.059
Yang, D., Hu, L. H., Huo, R., Jiang, Y. Q., Liu, S., & Tang, F. (2010). Experimental study on buoyant flow stratification induced by a fire in a horizontal channel. Applied Thermal Engineering, 30, 872–878. https://doi.org/10.1016/j.applthermaleng.2009.12.019
Yi, L., Xu, Q., Xu, Z., & Wu, D. (2014). An experimental study on critical velocity in sloping tunnel with longitudinal ventilation under fire. Tunnelling and Underground Space Technology, 43, 198–203. https://doi.org/10.1016/j.tust.2014.05.017
Zeng, Z., Xiong, K., Lu, X., Cheng, M., & Liu, W. F. (2018). Study on the smoke stratification length under longitudinal ventilation in tunnel fires. International Journal of Thermal Sciences, 132, 285–295. https://doi.org/10.1016/j.ijthermalsci.2018.05.038