CPFD Simulation of Hydrodynamic Characteristics of Multiple Particles Mixing in a Circulating Fluidized Bed

Document Type : Regular Article

Authors

School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

Computational particle fluid dynamics method is utilized to study the influence of polydisperse and monodisperse particle size distribution, fuel addition, and biomass mixing ratio on the gas-solid flow behavior in a pilot-scale circulating fluidized bed (CFB). Numerical results show that a polydisperse system with different particle sizes can enhance the fluidization quality and the uniformity of the particle volume fraction in comparison with a monodisperse system with uniform particle sizes. When fuel is present in the CFB, the disturbance at the circulation inlet is eliminated and the particle aggregation effect at the wall is reduced. Furthermore, the particle volume fraction, pressure, and particle velocity distributions change only slightly as the biomass increased from 0% to 20% or from 50% to 100% of the total fuel mass. However, as the biomass ratio increases from 20% to 50%, the pressure drop in the riser decreases and the back-mixing degree at the riser wall weakens.

Keywords

Main Subjects


Agrawal, K., Loezos, P. N., Syamlal, M., & Sundaresan, S. (2001). The role of meso-scale structures in rapid gas-solid flows. Journal of Fluid Mechanics, 445, 151-185. https://doi.org/10.1017/S0022112001005663.
Almuttahar, A., & Taghipour, F. (2008a). Computational fluid dynamics of high density circulating fluidized bed riser: Study of modeling parameters. Powder Technology, 185, 11-23. https://doi.org/10.1016/j.powtec.2007.09.010.
Almuttahar, A., &Taghipour, F. (2008b). Computational fluid dynamics of a circulating fluidized bed under various fluidization conditions. Chemical Engineering Science, 63(6),1696-1709. https://doi.org/10.1016/j.ces.2007.11.020.
Alobaid, F. (2015). An offset-method for Euler-Lagrange approach. Chemical Engineering Science, 138, 173-193. http://dx.doi.org/10.1016/j.ces.2015.08.010.
Bandara, J. C., Moldestad, B. M. E., & Eikeland, M. S. (2022). Circulating fluidized bed reactor-Experimental optimization of loop seal aeration and parametric study using CPFD simulations. Powder Technology, 405, 117495. https://doi.org/10.1016/j.powtec.2022.117495.
Bhusarapu, S., Al-Dahhan, M. H., & Duduković, M. P. (2006). Solids flow mapping in a gas–solid riser: Mean holdup and velocity fields. Powder Technology, 163, 98-123. https://doi.org/10.1016/j.powtec.2006.01.013.
Carlos Varas, A. E., Peters, E. A. J. F., & Kuipers, J. A. M. (2017). Experimental study of full field riser hydrodynamics by PIV/DIA coupling. Powder Technology, 313, 402-416. https://doi.org/10.1016/j.powtec.2017.01.055.
Chen, C., Werther, J., Heinrich, S., Qi, H., & Hartge, E. (2013). CPFD simulation of circulating fluidized bed risers. Powder Technology, 235, 238-247. https://doi.org/10.1016/j.powtec.2012.10.014.
Chen, Y., Tian, Z., & Miao, Z. (2006). Analysis of the pressure fluctuations in binary solids circulating fluidized bed. Energy Conversion and Management, 47(5), 611-623. https://doi.org/ 10.1016/j.enconman.2005.05.013.
Córcoles, J. I., Acosta-Iborra, A., Almendros-Ibáñez, J. A., & Sobrino, C. (2021). Numerical simulation of a 3-D gas-solid fluidized bed: Comparison of TFM and CPFD numerical approaches and experimental validation. Advanced Powder Technology, 32 (10), 3689-3705. https://doi.org/10.1016/j.apt.2021.08.029.
Dong, P., Tu, Q., Wang, H., & Zhu, Z. (2021). Effects of pressure on flow characteristics in a pressurized circulating fluidized bed. Particuology, 59, 16-23. https://doi.org/10.1016/j.partic.2020.07.004.
Dymala, T., Wytrwat, T., & Heinrich, S. (2021). MP-PIC simulation of circulating fluidized beds using an EMMS based drag model for Geldart B particles. Particuology, 59, 76-90. https://doi.org/10.1016/j.partic.2021.07.002.
Fan, R., Marchisio, D.L., & Fox, R.O. (2004). Application of the direct quadrature method of moments to polydisperse gas-solid fluidized beds. Powder Technology, 139(1), 7-20. https://doi.org/10.1016/j.powtec.2003.10.005.
Gündüz, R. D., Yılmaz, B., & Özdoğan, S. (2020). Cold flow simulation of a 30 kWth CFB riser with CPFD. Journal of Applied Fluid Mechanics 13(2), 603-614.   https://doi.org/10.29252/jafm.13.02.30534.
Harris, S. E., & Crighton, D. G. (1994). Solitons, solitary waves, and voidage disturbances in gas-fluidized beds. Journal of Fluid Mechanics, 266, 243-276. https://doi.org/ 10.1017/S0022112094000996.
Lan, X., Shi, X., Zhang, Y., Wang, Y., Xu, C., & Gao, J. (2013). Solids back-mixing behavior and effect of the mesoscale structure in CFB risers. Industrial & Engineering Chemistry Research, 52, 11888-11896. https://doi.org/10.1021/ie3034448.
Leboreiro, J., Joseph, G. G., Hrenya, C. M., Snider, D. M., Banerjee, S. S., &Galvin, J. E. (2008). The influence of binary drag laws on simulations of species segregation in gas-fluidized beds. Powder Technology, 184(3), 275-290. https://doi.org/10.1016/j.powtec.2007.08.015.
Li, S., Zhao, P., Xu, J., Zhang, L., & Wang, J. (2022). CFD-DEM simulation of polydisperse gas-solid flow of Geldart A particles in bubbling micro-fluidized beds. Chemical Engineering Science, 253, 1177551. https://doi.org/10.1016/j.ces.2022.117551.
Li, T., Dietiker, J. F., & Shadle, L. (2014). Comparison of full-loop and riser-only simulations for a pilot-scale circulating fluidized bed riser. Chemical Engineering Science, 120, 10-21. https://doi.org/10.1016/j.ces.2014.08.041.
Liu, C., Zhao, M., Wang, W., & Li, J. (2015). 3D CFD simulation of a circulating fluidized bed with on-line adjustment of mechanical valve. Chemical Engineering Science, 137, 646-55. https://doi.org/10.1016/j.ces.2015.07.006.
Liu, D., & van Wachem, B. (2019). Comprehensive assessment of the accuracy of CFD-DEM simulations of bubbling fluidized beds. Powder Technology, 343, 145-158. https://doi.org/10.1016/j.powtec.2018.11.025.
Liu, H. P., Bi, Y., Sun H. W., Zhang, L., Yang, F., & Wang Q. (2022). CPFD simulation of gas-solid flow in dense phase zone of pant-leg fluidized bed with secondary air. Journal of Applied Fluid Mechanics, 15(5), 1319-1331. https://doi.org/10.29252/jafm.11.04.28397.
Liu, H., Li, J., & Wang Q. (2017). Simulation of gas–solid flow characteristics in a circulating fluidized bed based on a computational particle fluid dynamics model. Powder Technology, 321, (132-142). http://dx.doi.org/10.1016/j.powtec.2017.07.040
Luo, K., Wu, F., Yang, S., Fang, M., & Fan, J. (2015). High-fidelity simulation of the 3-D full-loop gas–solid flow characteristics in the circulating fluidized bed. Chemical Engineering Science, 123, 22-38. https://doi.org/10.1016/j.ces.2014.10.039.
Ma, Q., Lei, F., Xu, X., & Xiao, Y. (2017). Three-dimensional full-loop simulation of a high-density CFB with standpipe aeration experiments. Powder Technology, 320, 574-585. https://doi.org/10.1016/j.powtec.2017.07.094.
Mathiesen, V., Solberg, T., & Hjertager, B. H. (2000). Predictions of gas/particle flow with an Eulerian model including a realistic particle size distribution. Powder Technology, 112, 34-35. https://doi.org/ 10.1016/S0032-5910(99)00303-4.
Nikolopoulos, A., Nikolopoulos, N., Charitos, A., Grammelis, P., Kakaras, E., Bidwe, A. R., & Varela, G. (2013). High-resolution 3-D full-loop simulation of a CFB carbonator cold model. Chemical Engineering Science, 90, 137-150. https://doi.org/10.1016/j.ces.2012.12.007.
Shi, X., Lan, X., Liu, F., Zhang, Y., & Gao, J. (2014). Effect of particle size distribution on hydrodynamics and solids back-mixing in CFB risers using CPFD simulation. Powder Technology, 266, 135-143. https://doi.org/10.1016/j.powtec.2014.06.025.
Snider, D. M. (2001). An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows. Journal of Computational Physics, 170, 523-549. https://doi.org/10.1006/jcph.2001.6747.
Sung, W. C., Kim, J. Y., Chung, S. W., & Lee, D.H. (2021). Effect of particle size distribution on hydrodynamics of pneumatic conveying system based on CPFD simulation. Advanced Powder Technology, 32(7), 2336-2344. https://doi.org/10.1016/j.apt.2021.05.010.
Tu, Q., & Wang H. (2017). CPFD study of a full-loop three-dimensional pilot-scale circulating fluidized bed based on EMMS drag model. Powder Technology, 323, 534-547. https://doi.org/10.1016/j.powtec.2017.09.045.
Wang, Q., Yang, H., Wang, P., Lu, J., Liu, Q., Zhang, H., Wei, L., & Zhang, M. (2014a). Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal, part I—Determination of modeling parameters. Powder Technology, 253, 814-821. https://doi.org/10.1016/j.powtec.2013.11.041.
Wang, Q., Yang, H., Wang, P., Lu, J., Liu, Q., Zhang, H., Wei, L., & Zhang, M. (2014b). Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal Part II—Investigation of solids circulation. Powder Technology, 253. 822-828. https://doi.org/10.1016/j.powtec.2013.11.040.
Wang, S., Luo, K., Hu, C., Sun, L., & Fan, J. (2018). Effect of superficial gas velocity on solid behaviors in a full-loop CFB. Powder Technology, 333, 91-105. https://doi.org/10.1016/j.powtec.2018.04.011.
Xiang, J., & McGlinchey, D. (2004). Numerical simulation of particle motion in dense phase pneumatic conveying. Granular Matter, 6, 167-172. https://doi.org/ 10.1007/s10035-004-0161-2.
Yang, S., & Wang, S. (2020). Eulerian-Lagrangian simulation of the full-loop gas-solid hydrodynamics in a pilot-scale circulating fluidized bed. Powder Technology, 369, 223-237. https://doi.org/10.1016/j.powtec.2020.05.043.
Yang, S., Wang, S., Luo, K., Fan, J., & Chew, J. W. (2019a). Numerical investigation of the cluster property and flux distribution in three-dimensional full-loop circulating fluidized bed with multiple parallel cyclones. Powder Technology, 342, 253-266. https://doi.org/10.1016/j.powtec.2018.10.009.
Yang, S., Wang, S., Luo, K., Fan, J., & Chen, J. W. (2019b). Numerical investigation of the back-mixing and non-uniform characteristics in the three-dimensional full-loop circulating fluidized bed combustor with six parallel cyclones. Applied Thermal Engineering, 153, 524-535. https://doi.org/10.1016/j.applthermaleng.2019.03.032.
Yang, Y., Wu, H., Lin, W., Li, H., & Zhu, Q. (2018). An exploratory study of three-dimensional MP-PIC-based simulation of bubbling fluidized beds with and without baffles. (2018). Particulogy, 39, 68-77. https://doi.org/10.1016/j.partic.2017.10.003.
Yang, Z., Zhang, Y., & Zhang, H. (2019c). CPFD simulation on effects of louver baffles in a two-dimensional fluidized bed of Geldart A particles. Advanced Powder Technology, 30(11), 2712-2725. https://doi.org/10.1016/j.apt.2019.08.018.
Zhang, H., & Lu, Y. (2019). A computational particle fluid-dynamics simulation of hydrodynamics in a three-dimensional full-loop circulating fluidized bed: Effects of particle-size distribution. Particuology, 4, 134-145. https://doi.org/10.1016/j.partic.2019.02.004.
Zhang, H., Li, W., Ma, Q., Zhang, Y., & Lei., F. (2020). Numerical study on influence of exit geometry in gas–solid flow hydrodynamics of HDCFB riser by CPFD. Advanced Powder Technology, 31, 4005-4017. https://doi.org/10.1016/j.apt.2020.08.006.
Zhu, X., Dong, P., Tu, Q., Zhu, Z., Yang, W., & Wang, H. (2019). Investigation of gas-solid flow characteristics in the cyclone dipleg of a pressurised circulating fluidised bed by ECT measurement and CPFD simulation. Measurement science & technology, 30, 54002. https://doi.org/10.1088/1361-6501/aafd7e.
Zhu, X., Dong, P., Tu, Q., Zhu, Z., Yang, W., & Wang, H. (2020). Investigation of gas-solids flow characteristics in a pressurised circulating fluidised bed by experiment and simulation. Powder Technology, 366, 420-433. https://doi.org/10.1016/j.powtec.2020.02.047.