Adamou, A., Turner, J., Costall, A., Jones, A., & Copeland, C. (2021). Design, simulation, and validation of additively manufactured high-temperature combustion chambers for micro gas turbines.
Energy Conversion and Management, 248, 114805.
https://doi.org/10.1016/j.enconman.2021.114805
Agwu, O., Runyon, J., Goktepe, B., Chong, C. T., Ng, J. H., Giles, A., & Valera-Medina, A. (2020). Visualisation and performance evaluation of biodiesel/methane co-combustion in a swirl-stabilised gas turbine combustor.
Fuel, 277, 118172.
https://doi.org/10.1016/j.fuel.2020.118172
ANSYS Fluent Theory Guide, Release 17.2, ANSYS, Inc. (2016)
Benaissa, S., Adouane, B., Ali, S. M., Rashwan, S. S., & Aouachria, Z. (2022). Investigation on combustion characteristics and emissions of biogas/hydrogen blends in gas turbine combustors.
Thermal Science and Engineering Progress, 27, 101178.
https://doi.org/10.1016/j.tsep.2021.101178
Boxx, I., Slabaugh, C., Kutne, P., Lucht, R. P., & Meier, W. (2015). 3 kHz PIV/OH-PLIF measurements in a gas turbine combustor at elevated pressure.
Proceedings of the Combustion Institute, 35(3), 3793-3802.
https://doi.org/10.1016/j.proci.2014.06.090
Bulat, G., Fedina, E., Fureby, C., Meier, W., & Stopper, U. (2015). Reacting flow in an industrial gas turbine combustor: LES and experimental analysis.
Proceedings of the Combustion Institute, 35(3), 3175-3183.
https://doi.org/10.1016/j.proci.2014.05.015
Chen, F., Ruan, C., Yu, T., Cai, W., Mao, Y., & Lu, X. (2019). Effects of fuel variation and inlet air temperature on combustion stability in a gas turbine model combustor.
Aerospace Science and Technology, 92, 126-138.
https://doi.org/10.1016/j.ast.2019.05.052
Chen, Y., & Driscoll, J. F. (2016). A multi-chamber model of combustion instabilities and its assessment using kilohertz laser diagnostics in a gas turbine model combustor.
Combustion and Flame, 174, 120-137.
https://doi.org/10.1016/j.combustflame.2016.08.022
Emami, M. D., Shahbazian, H., & Sunden, B. (2019). Effect of operational parameters on combustion and emissions in an industrial gas turbine combustor.
Journal of Energy Resources Technology, 141(1), 012202.
https://doi.org/10.1115/1.4040532
Erdener, B. C., Sergi, B., Guerra, O. J., Chueca, A. L., Pambour, K., Brancucci, C., & Hodge, B. M. (2023). A review of technical and regulatory limits for hydrogen blending in natural gas pipelines.
International Journal of Hydrogen Energy, 48(14), 5595-5617.
https://doi./10.1016/j.ijhydene.2022.10.254
İlbaş, M., Karyeyen, S., & Yilmaz, İ. (2016). Effect of swirl number on combustion characteristics of hydrogen-containing fuels in a combustor.
International Journal of Hydrogen Energy, 41(17), 7185-7191.
https://doi.org/10.1016/j.ijhydene.2015.12.107
Kruse, S., Kerschgens, B., Berger, L., Varea, E., & Pitsch, H. (2015). Experimental and numerical study of MILD combustion for gas turbine applications.
Applied Energy, 148, 456-465.
https://doi.org/10.1016/j.apenergy.2015.03.054
Kurata, O., Iki, N., Inoue, T., Matsunuma, T., Tsujimura, T., Furutani, H., Kawano, M., Arai, K., Okafor, E. C., Hayakawa, A. & Kobayashi, H. (2019). Development of a wide range-operable, rich-lean low-NOx combustor for NH3 fuel gas-turbine power generation.
Proceedings of the combustion Institute, 37(4), 4587-4595.
https://doi.org/10.1016/j.proci.2018.09.012
Lee, M. C., Yoon, J., Joo, S., Kim, J., Hwang, J., & Yoon, Y. (2015). Investigation into the cause of high multi-mode combustion instability of H2/CO/CH4 syngas in a partially premixed gas turbine model combustor.
Proceedings of the Combustion Institute, 35(3), 3263-3271.
https://doi.org/10.1016/j.proci.2014.07.013
Li, S., Zhang, S., Zhou, H., & Ren, Z. (2019). Analysis of air-staged combustion of NH3/CH4 mixture with low NOx emission at gas turbine conditions in model combustors.
Fuel, 237, 50-59.
https://doi.org/10.1016/j.fuel.2018.09.131
Liu, H., Wang, Y., Yu, T., Liu, H., Cai, W., & Weng, S. (2020). Effect of carbon dioxide content in biogas on turbulent combustion in the combustor of micro gas turbine.
Renewable Energy, 147, 1299-1311.
https://doi.org/10.1016/j.renene.2019.09.014
Liu, Y., Sun, X., Sethi, V., Nalianda, D., Li, Y. G., & Wang, L. (2017). Review of modern low emissions combustion technologies for aero gas turbine engines.
Progress in Aerospace Sciences, 94, 12-45.
https://doi.org/10.1016/j.paerosci.2017.08.001
Lokini, P., Roshan, D. K., & Kushari, A. (2019). Influence of swirl and primary zone airflow rate on the emissions and performance of a liquid-fueled gas turbine combustor.
Journal of Energy Resources Technology, 141(6), 062009.
https://doi.org/10.1115/1.4042410
Masrouri, M., Tahsini, A. M., & Vahabi, S. E. (2023). Coating roughness impact on the combustion chambers life of the turbo engines.
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 09544100231181209.
https://doi.org/10.1177/09544100231181209
Moraes, R. C., Dias, M. A., & Mendes Neto, L. J. (2022). Gas turbine combustor CFD study and single-objective DoE optimization.
Numerical Heat Transfer, Part A: Applications, 82(11), 700-715.
https://doi.org/10.1080/10407782.2022.2083863
Murthy, M. S. N., Bhadkamkar, N., Penumarti, A., Prabbu, S. V., & Sreedhara, S. (2018). Numerical investigation of swirl flow using different swirlers in a real-life gas turbine combustor.
Journal of Flow Visualization and Image Processing, 25(2).
https://doi.org/0.1615/JFlowVisImageProc.2018027771
Nemitallah, M. A., Rashwan, S. S., Mansir, I. B., Abdelhafez, A. A., & Habib, M. A. (2018). Review of novel combustion techniques for clean power production in gas turbines.
Energy & Fuels, 32(2), 979-1004.
https://doi.org/10.1021/acs.energyfuels.7b03607
Okafor, E. C., Somarathne, K. K. A., Hayakawa, A., Kudo, T., Kurata, O., Iki, N., & Kobayashi, H. (2019). Towards the development of an efficient low-NOx ammonia combustor for a micro gas turbine.
Proceedings of the combustion institute, 37(4), 4597-4606.
https://doi.org/10.1016/j.proci.2018.07.083
Ouali, S., Bentebbiche, A. H., & Belmrabet, T. (2016). Numerical simulation of swirl and methane equivalence ratio effects on premixed turbulent flames and NOx apparitions.
Journal of Applied Fluid Mechanics, 9(2), 987-998.
https://doi.org/10.18869/acadpub.jafm.68.225.22603
Reale, F., & Sannino, R. (2021). Water and steam injection in micro gas turbine supplied by hydrogen enriched fuels: Numerical investigation and performance analysis.
International Journal of Hydrogen Energy, 46(47), 24366-24381.
https://doi.org/10.1016/j.ijhydene.2021.04.169
Runyon, J., Giles, A., Marsh, R., Pugh, D., Goktepe, B., Bowen, P., & Morris, S. (2020). Characterization of additive layer manufacturing swirl burner surface roughness and its effects on flame stability using high-speed diagnostics.
Journal of Engineering for Gas Turbines and Power, 142(4), 041017.
https://doi./10.1115/1.4044950
Syred, N., Morris, S. M., Bowen, P. J., Valera-Medina, A., & Marsh, R. (2015).
Preliminary results from a high pressure optical gas turbine combustor model with 3D viewing capability. 53rd AIAA Aerospace Sciences Meeting.
https://doi.org/10.2514/6.2015-1655
Valera-Medina, A., Marsh, R., Runyon, J., Pugh, D., Beasley, P., Hughes, T., & Bowen, P. (2017). Ammonia–methane combustion in tangential swirl burners for gas turbine power generation.
Applied Energy, 185, 1362-1371.
https://doi./10.1016/j.apenergy.2016.02.073
Zhang, H., Zhang, Z., Xiong, Y., Liu, Y., & Xiao, Y. (2018, June).
Experimental and numerical investigations of MILD combustion in a model combustor applied for gas turbine. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers.
https://doi.org/10.1115/GT2018-76253
British Standard, I. S. O. (1996). 11042-1: 1996, Gas turbines. Exhaust gas emission Measurement and evaluation. British Standards Institution, UK.