Numerical Simulation of H2 Addition Effect to CH4 Premixed Turbulent Flames for Gas Turbine Burner

Document Type : Regular Article

Author

LEMI laboratory, Faculty of technology, M’hammed Bougara University, Frantz Fanon street, 35 100 Boumerdes, Algeria

Abstract

Present computational simulation studied H2-CH4 combustion characteristics in a specific gas turbine combustor used for power generation. Across four thermal loads (1.1-4.4 bar) and varying hydrogen fraction (0-50% by volume), changes in flame temperature, reaction zone stability, and flow field are scrutinized. Results show coherent thermal patterns and stable flame fronts across all conditions, indicating hydrogen addition does not deteriorate combustion when blended with methane. Flame temperatures increase by approximately 40 K with increasing hydrogen fraction. Acceptable NOx emissions are observed, peaking at 6.20 ppm with 50 % H2 at 168 kW. The combustor enables reliable operation for blends up to 50% hydrogen. These results suggest potential for increasing legislated hydrogen blending limits for more sustainable gas turbine power generation. By expanding the viable envelope for hydrogen-methane mixtures, this work contributes to understanding combustion of decarbonized fuels in gas turbines. However, as results are limited to the investigated combustor geometry, generalized conclusions cannot be drawn at this stage. Nonetheless, this study represents an incremental advancement in knowledge that may inform future research on sustainable power generation and decarbonization efforts.

Keywords

Main Subjects


Adamou, A., Turner, J., Costall, A., Jones, A., & Copeland, C. (2021). Design, simulation, and validation of additively manufactured high-temperature combustion chambers for micro gas turbines. Energy Conversion and Management, 248, 114805. https://doi.org/10.1016/j.enconman.2021.114805
Agwu, O., Runyon, J., Goktepe, B., Chong, C. T., Ng, J. H., Giles, A., & Valera-Medina, A. (2020). Visualisation and performance evaluation of biodiesel/methane co-combustion in a swirl-stabilised gas turbine combustor. Fuel, 277, 118172. https://doi.org/10.1016/j.fuel.2020.118172
Amani, E., Akbari, M. R., & Shahpouri, S. (2018). Multi-objective CFD optimizations of water spray injection in gas-turbine combustors. Fuel, 227, 267-278. https://doi.org/10.1016/j.fuel.2018.04.093
ANSYS Fluent Theory Guide, Release 17.2, ANSYS, Inc. (2016)
Baej, H., Akair, A., Diyaf, A., Adeilla, S., & Kraiem, A. (2018). Modeling effects of outlet nozzle geometry on swirling flows in gas turbine. http://dspace.elmergib.edu.ly/xmlui/handle/123456789/67
Benaissa, S., Adouane, B., Ali, S. M., Rashwan, S. S., & Aouachria, Z. (2022). Investigation on combustion characteristics and emissions of biogas/hydrogen blends in gas turbine combustors. Thermal Science and Engineering Progress, 27, 101178. https://doi.org/10.1016/j.tsep.2021.101178
Boxx, I., Slabaugh, C., Kutne, P., Lucht, R. P., & Meier, W. (2015). 3 kHz PIV/OH-PLIF measurements in a gas turbine combustor at elevated pressure. Proceedings of the Combustion Institute, 35(3), 3793-3802. https://doi.org/10.1016/j.proci.2014.06.090
Bulat, G., Fedina, E., Fureby, C., Meier, W., & Stopper, U. (2015). Reacting flow in an industrial gas turbine combustor: LES and experimental analysis. Proceedings of the Combustion Institute, 35(3), 3175-3183. https://doi.org/10.1016/j.proci.2014.05.015
Chen, F., Ruan, C., Yu, T., Cai, W., Mao, Y., & Lu, X. (2019). Effects of fuel variation and inlet air temperature on combustion stability in a gas turbine model combustor. Aerospace Science and Technology, 92, 126-138. https://doi.org/10.1016/j.ast.2019.05.052
Chen, Y., & Driscoll, J. F. (2016). A multi-chamber model of combustion instabilities and its assessment using kilohertz laser diagnostics in a gas turbine model combustor. Combustion and Flame, 174, 120-137. https://doi.org/10.1016/j.combustflame.2016.08.022
Emami, M. D., Shahbazian, H., & Sunden, B. (2019). Effect of operational parameters on combustion and emissions in an industrial gas turbine combustor. Journal of Energy Resources Technology, 141(1), 012202. https://doi.org/10.1115/1.4040532
Erdener, B. C., Sergi, B., Guerra, O. J., Chueca, A. L., Pambour, K., Brancucci, C., & Hodge, B. M. (2023). A review of technical and regulatory limits for hydrogen blending in natural gas pipelines. International Journal of Hydrogen Energy, 48(14), 5595-5617. https://doi./10.1016/j.ijhydene.2022.10.254
İlbaş, M., Karyeyen, S., & Yilmaz, İ. (2016). Effect of swirl number on combustion characteristics of hydrogen-containing fuels in a combustor. International Journal of Hydrogen Energy, 41(17), 7185-7191. https://doi.org/10.1016/j.ijhydene.2015.12.107
Kruse, S., Kerschgens, B., Berger, L., Varea, E., & Pitsch, H. (2015). Experimental and numerical study of MILD combustion for gas turbine applications. Applied Energy, 148, 456-465. https://doi.org/10.1016/j.apenergy.2015.03.054
Kurata, O., Iki, N., Inoue, T., Matsunuma, T., Tsujimura, T., Furutani, H., Kawano, M., Arai, K., Okafor, E. C., Hayakawa, A. & Kobayashi, H. (2019). Development of a wide range-operable, rich-lean low-NOx combustor for NH3 fuel gas-turbine power generation. Proceedings of the combustion Institute, 37(4), 4587-4595. https://doi.org/10.1016/j.proci.2018.09.012
Lee, M. C., Yoon, J., Joo, S., Kim, J., Hwang, J., & Yoon, Y. (2015). Investigation into the cause of high multi-mode combustion instability of H2/CO/CH4 syngas in a partially premixed gas turbine model combustor. Proceedings of the Combustion Institute, 35(3), 3263-3271. https://doi.org/10.1016/j.proci.2014.07.013
Li, S., Zhang, S., Zhou, H., & Ren, Z. (2019). Analysis of air-staged combustion of NH3/CH4 mixture with low NOx emission at gas turbine conditions in model combustors. Fuel, 237, 50-59. https://doi.org/10.1016/j.fuel.2018.09.131
Liu, H., Wang, Y., Yu, T., Liu, H., Cai, W., & Weng, S. (2020). Effect of carbon dioxide content in biogas on turbulent combustion in the combustor of micro gas turbine. Renewable Energy, 147, 1299-1311. https://doi.org/10.1016/j.renene.2019.09.014
Liu, Y., Sun, X., Sethi, V., Nalianda, D., Li, Y. G., & Wang, L. (2017). Review of modern low emissions combustion technologies for aero gas turbine engines. Progress in Aerospace Sciences, 94, 12-45. https://doi.org/10.1016/j.paerosci.2017.08.001
Lokini, P., Roshan, D. K., & Kushari, A. (2019). Influence of swirl and primary zone airflow rate on the emissions and performance of a liquid-fueled gas turbine combustor. Journal of Energy Resources Technology, 141(6), 062009. https://doi.org/10.1115/1.4042410
Mahto, N., & Chakravarthy, S. R. (2022). Response surface methodology for design of gas turbine combustor. Applied Thermal Engineering, 211, 118449. https://doi.org/10.1016/j.applthermaleng.2022.118449
Masrouri, M., Tahsini, A. M., & Vahabi, S. E. (2023). Coating roughness impact on the combustion chambers life of the turbo engines. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 09544100231181209. https://doi.org/10.1177/09544100231181209
Moraes, R. C., Dias, M. A., & Mendes Neto, L. J. (2022). Gas turbine combustor CFD study and single-objective DoE optimization. Numerical Heat Transfer, Part A: Applications, 82(11), 700-715. https://doi.org/10.1080/10407782.2022.2083863
Murthy, M. S. N., Bhadkamkar, N., Penumarti, A., Prabbu, S. V., & Sreedhara, S. (2018). Numerical investigation of swirl flow using different swirlers in a real-life gas turbine combustor. Journal of Flow Visualization and Image Processing, 25(2). https://doi.org/0.1615/JFlowVisImageProc.2018027771
Nemitallah, M. A., Rashwan, S. S., Mansir, I. B., Abdelhafez, A. A., & Habib, M. A. (2018). Review of novel combustion techniques for clean power production in gas turbines. Energy & Fuels, 32(2), 979-1004. https://doi.org/10.1021/acs.energyfuels.7b03607
Okafor, E. C., Somarathne, K. K. A., Hayakawa, A., Kudo, T., Kurata, O., Iki, N., & Kobayashi, H. (2019). Towards the development of an efficient low-NOx ammonia combustor for a micro gas turbine. Proceedings of the combustion institute, 37(4), 4597-4606. https://doi.org/10.1016/j.proci.2018.07.083
Ouali, S., Bentebbiche, A. H., & Belmrabet, T. (2016). Numerical simulation of swirl and methane equivalence ratio effects on premixed turbulent flames and NOx apparitions. Journal of Applied Fluid Mechanics, 9(2), 987-998. https://doi.org/10.18869/acadpub.jafm.68.225.22603
Pashchenko, D. (2024). Ammonia fired gas turbines: Recent advances and future perspectives. Energy, 290, 130275. https://doi.org/10.1016/j.energy.2024.130275
Psomoglou, I. (2023). Influence of surface roughness on burner characteristics and combustion performance of AM combustors [Doctoral dissertation, Cardiff University]. https://orca.cardiff.ac.uk/id/eprint/162894
Rajabi, V., & Amani, E. (2019). A computational study of swirl number effects on entropy generation in gas turbine combustors. Heat Transfer Engineering, 40(3-4), 346-361. https://doi.org/10.1080/01457632.2018.1429056
Reale, F., & Sannino, R. (2021). Water and steam injection in micro gas turbine supplied by hydrogen enriched fuels: Numerical investigation and performance analysis. International Journal of Hydrogen Energy, 46(47), 24366-24381. https://doi.org/10.1016/j.ijhydene.2021.04.169
Runyon, J. O. N. (2017). Gas turbine fuel flexibility: pressurized swirl flame stability, thermoacoustics, and emissions [Doctoral dissertation, Cardiff University]. https://orca.cardiff.ac.uk/id/eprint/100686
Runyon, J., Giles, A., Marsh, R., Pugh, D., Goktepe, B., Bowen, P., & Morris, S. (2020). Characterization of additive layer manufacturing swirl burner surface roughness and its effects on flame stability using high-speed diagnostics. Journal of Engineering for Gas Turbines and Power, 142(4), 041017.https://doi./10.1115/1.4044950
See, Y. C., & Ihme, M. (2015). Large eddy simulation of a partially-premixed gas turbine model combustor. Proceedings of the Combustion Institute, 35(2), 1225-1234. https://doi.org/10.1016/j.proci.2014.08.006
Syred, N., Morris, S. M., Bowen, P. J., Valera-Medina, A., & Marsh, R. (2015). Preliminary results from a high pressure optical gas turbine combustor model with 3D viewing capability. 53rd AIAA Aerospace Sciences Meeting. https://doi.org/10.2514/6.2015-1655
Valera-Medina, A., Marsh, R., Runyon, J., Pugh, D., Beasley, P., Hughes, T., & Bowen, P. (2017). Ammonia–methane combustion in tangential swirl burners for gas turbine power generation. Applied Energy, 185, 1362-1371. https://doi./10.1016/j.apenergy.2016.02.073
Zhang, H., Zhang, Z., Xiong, Y., Liu, Y., & Xiao, Y. (2018, June). Experimental and numerical investigations of MILD combustion in a model combustor applied for gas turbine. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers. https://doi.org/10.1115/GT2018-76253
British Standard, I. S. O. (1996). 11042-1: 1996, Gas turbines. Exhaust gas emission Measurement and evaluation. British Standards Institution, UK.