Abdulaziz, K. G. A., Mohammed, K. A., Saima, R., & Muhammad, A. (2022). A novel numerical treatment of nonlinear and nonequilibrium model of gradient elution chromatography considering core-shell particles in the column.
Mathematical Problems in Engineering,
2022, 1619702–1619702.
https://doi.org/10.1155/2022/1619702
Abid, M., Bibi, M., Yasin, N., & Shahid, M. (2024). A Novel computational analysis of boundary driven two-dimensional heat flow with the internal heat generation.
Computational Algorithms and Numerical Dimensions.
http://dx.doi.org/10.22105/cand.2024.443017.1090
Aboueian, J., & Sohankar, A. (2017). Identification of flow regimes around two staggered square cylinders by a numerical study.
Theoretical and Computational Fluid Dynamics, 31(3), 295–315.
https://doi.org/10.1007/s00162-017-0424-2
Aboueian, J., Sohankar, A., Rastan, M. R., & Ghodrat, M. (2021). An experimental study on flow over two finite wall-mounted square cylinders in a staggered arrangement.
Ocean Engineering, 240, 109954-109954.
https://doi.org/10.1016/j.oceaneng.2021.109954
An, B., Bergada, J. M., Mellibovsky, M., Sang, W. M., & Xi, C. (2020). Numerical investigation on the fow around a square cylinder with an upstream splitter plate at low Reynolds numbers.
Meccanica, 55, 1037–1059.
https://doi.org/10.1007/s11012-020-01148-8
Baranwal, A. K., & Chhabra, R. P. (2016). Free convection in confined power-law fluids from two side-by-side cylinders in a square enclosure.
Heat Transfer Engineering, 37(18), 1521–1537.
https://doi.org/10.1080/01457632.2016.1151296
Bhatnagar, P. L., Gross, E. P., & Krook, M. (1954). A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems.
Physical Review, 94(3), 511–511.
https://doi.org/10.1103/PhysRev.94.511
Dou, H., Zhang, S., Yang, H., Setoguchi, T., & Kinoue, Y. (2018). Effect of rotational speed on the stability of two rotating side-by-side circular cylinders at low reynolds number.
Journal of Thermal Science, 27(2), 125–134.
https://doi.org/10.1007/s11630-018-0993-4
Griffith, M. D., Jacono, D. L., Sheridan, J., & Leontini, J. S. (2017). Flow-induced vibration of two cylinders in tandem and staggered arrangements.
Journal of Fluid Mechanics, 833, 98–130.
https://doi.org/10.1017/jfm.2017.673
Guo, Z. L., & Shu, C. (2013).
Lattice boltzmann method and its applications in engineering. World Scientific Publishing Co. Pte. Ltd., Singapore.
http://dx.doi.org/10.1142/8806
Haq, H. B. U., Akram, W., Irshad, M. N., Kosar, A., & Abid, M. (2024). Enhanced real-time facial expression recognition using deep learning.
Acadlore Transactions on AI and Machine Learning (ATAIML), 3(1), 24-35.
http://dx.doi.org/10.56578/ataiml030103
Hsu, L. C., Chen, C. L., & Ye, J. Z., (2017). A study of flow patterns for staggered cylinders at low Reynolds number by spectral element method.
Journal of Mechanical Science and Technology, 31(6), 2765–2780.
https://doi.org/10.1007/s12206-017-0520-7
Islam, S. U., Nazeer, G., & Shigri, S. H., (2019). Numerical investigation of different flow regimes for square cylinders in staggered configuration.
KSCE Journal of Civil Engineering, 23(5), 2188–2197.
https://doi.org/10.1007/s12205-019-0726-6
Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., & Viggen, E. M. (2017). The lattice Boltzmann method.
Springer International Publishing, 10(978-3), 4-15.
https://doi.10.1007/978-3-319-44649-3
Liu, B., & Jaiman, R. K. (2016).
The effect of gap flow on vortex-induced vibration of side-by-side cylinder arrange- ment. International Conference on Offshore Mechanics and Arctic Engineering.
https://doi.org/10.1115/OMAE2016-54736
Meneghini, J. R., Saltara, F., Siqueira, C. L. R., & Ferrari, J. A. (2001). Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements.
Journal of fluids and structures, 15(2), 327–350.
https://doi.org/10.1006/jfls.2000.0343
Muhammad, A. A. (2019).
Lattice Boltzmann method: fundamental and engineering applications with computer codes. Springer, New York.
https://doi.org/10.2514/1.J051744
Murtaza, S. & Ahmad, Z. (2024). Analysis of Clay Based Cementitious Nanofluid Subjected to Newtonian Heating and Slippage Conditions with Constant Proportional Caputo Derivative. GeoStruct Innovations (GSI), 2(2), 53-67.
https://doi.org/10.56578/gsi020201
Octavianty, R., & Asai, M. (2016). Effects of short splitter plates on vortex shedding and sound generation in flow past two side-by-side square cylinders.
Experiments in Fluids, 57(9), 1–13.
https://doi.org/10.1007/s00348-016-2227-4
Rehman, N., Abid, M., & Qamar, S., (2021). Numerical approximation of nonlinear and non-equilibrium model of gradient elution chromatography.
Journal of Liquid Chromatography & Related Technologies, 44(7-8), 382-394,.
https://doi.org/10.1080/10826076.2021.1947316
Robichuax, J., Balachandar, S., & Vanka, S. P. (1999). Three-dimensional floquet instability on the wake of square cylinder.
Physics of Fluids, 11(2-3), 560-578.
https://doi.org/10.1063/1.869930
Saha, A. K., Biswas, G., & Muralidhar, K. (2003). Three-dimensional study of fow past a square cylinder at low Reynolds numbers.
International Journal of Heat and Fluid Flow, 24, 54–66.
https://doi.org/10.1016/S0142-727X(02)00208-4
Sanyal, A., & Dhiman, A. (2020). Shear-induced viscosity stratified flow past a pair of heated side-by-side square cylinders in a confined domain.
Physics of Fluids, 32(5), 53601-53601.
https://doi.org/10.1063/5.0002083
Saqlain, M., Abid, M., Awais, M., & Stević, Ž. (2024). Analysis of software effort estimation by machine learning techniques.
Ingénierie des Systèmes d’Information, 28, 1445-1457.
http://dx.doi.org/10.18280/isi.280602
Sharma, A., & Eswaran, V. (2004). Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime.
Numerical Heat Transfer, Part A: Applications, 45(3), 247-269.
https://doi.org/10.1080/10407780490278562
Sharma, A., Raj, C. T., Chhabra, R. P., & Sharma, A. (2021). Machine learning modeling for wake turbulence downstream of a wall-mounted square cylinder
. Physics of Fluids, 33(11), 115118.
https://doi.org/10.1063/5.0063967
Shen, Z., Chen, Z., Xiang, N., Zong, W., & Tian, F. (2021). Numerical investigation and modal analysis of flow past two staggered circular cylinders.
Physics of Fluids, 33(8), 085110.
https://doi.org/10.1063/5.0058258
Shimizu, Y., & Tanida, Y., (1978). Fluid forces acting on cylinders of rectangular cross-section.
Transactions of the Japan Society of Mechanical Engineers-B, 44, 2699–2706.
https://doi.org/10.11159/jffhmt.2020.004
Singha, S., Nagarajan, K. K., & Sinhamahapatra, K. P. (2016). Numerical study of two-dimensional flow around two side-by-side circular cylinders at low Reynolds numbers.
Physics of Fluids, 28(5), 53603–53603.
https://doi.org/10.1063/1.4949332
Tong, F., Cheng, L., & Zhao, M. (2015). Numerical simulations of steady flow past two cylinders in staggered arrangements.
Journal of Fluid Mechanics,
765, 114-149.
https://doi.org/10.1017/jfm.2014.708
Vinodh, A., & Supradeepan, K. (2020). A numerical study on influence of the control cylinder on two side-by-side cylinders.
Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(4), 1–12.
https://doi.org/10.1007/s40430-020-2264-z
Vu, H. C., Ahn, J., & Hwang, J. H. (2016). Numerical simulation of flow past two circular cylinders in tandem and side-by-side arrangement at low Reynolds numbers.
KSCE Journal of Civil Engineering, 20(4), 1594–1604.
https://doi.org/10.1007/s12205-015-0602-y
Woyciekoski, M. L., Endres, L. A. M., Paula, A. V. D., & Mo¨ller, S. V. (2020). Influence of the free end flow on the bistability phenomenon after two side by side finite height cylinders with aspect ratios of 3 and 4 and high blockage.
Ocean Engineering, 195, 106658–106658.
http://dx.doi.org/10.1016/j.oceaneng.2019.106658
Wu, G., Du, X., & Wang, Y. (2020). LES of flow around two staggered circular cylinders at a high subcritical Reynolds number of 1.4× 105
. Journal of Wind Engineering and Industrial Aerodynamics, 104044–104044.
https://doi.org/10.1016/j.jweia.2019.104044
Wu, X. D., Liu, H. P., & Chen, F. (2018). Numerical investigation of flow characteristics around two side-by-side cylinders by immersed boundary-lattice Boltzmann flux solver.
Journal of Zhejiang University-Science A, 19(5), 384–398. 384–398.
http://doi.org/10.1631/jzus.A1700112
Xu, W., Qin, W., & Yu, Y. (2020). Flow-induced vibration of two identical long flexible cylinders in a staggered arrangement.
International Journal of Mechanical Sciences, 180, 105637–105637.
https://doi.org/10.1016/j.ijmecsci.2020.105637
Zhang, C., Kang, Z., Xiong, Y., Ai, S., & Ma, G., (2021). Experimental investigation on coupled crossflow and in-line vortex-induced vibration responses of two staggered circular cylinders.
Proceedings of the Institution of Mechanical Engineers, 235, 288–300.
https://doi.org/10.1177/1475090220907473
Zhang, W., Li, X., and Zhu, Z., (2019). Quantification of wake unsteadiness for low-Re flow across two staggered cylinders.
Proceedings of the Institution of Mechanical Engineers, 233, 6892–6909.
https://doi.org/10.1177/0954406219866478
Zhang, Y., Sheng, L., Duan, J., Chen, K., & You, Y., (2018).
LBM simulation of flow around an oscillating cylinder and a stationary cylinder in side-by-side arrangement. International Conference on Offshore Mechanics and Arctic Engineering.
https://doi.org/10.1115/OMAE2018-77133
Zhou, C. Y. (2021). Flow control around two side-by-side square cylinders using dual splitter plates.
Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(2), 1–28.
https://doi.org/10.1007/s40430-020-02795-4
Zhou, Y., Nagata, K., Sakai, Y., Watanabe, T., Ito, Y., & Hayase, T. (2020). Energy transfer in turbulent flows behind two side-by-side square cylinders.
Journal of Fluid Mechanics, 903–903.
https://doi.org/10.1017/jfm.2020.611
Zhou, Y., Wang, Z., Qian, Y., Yang, H., & Wei, Y., (2021). Numerical simulation of the flow around two square cylinders using the lattice Boltzmann method.
Physics of Fluids, 33(3), 37110–37110.
https://doi.org/10.1063/5.0040020