Numerical Investigation and Statistical Analysis of the Flow Patterns Behind Square Cylinders Arranged in a Staggered Configuration Utilizing the Lattice Boltzmann Method

Document Type : Regular Article

Authors

1 Department of Mathematics, North Carolina State University, NC 27695, Raleigh, USA

2 Departments of Mathematics & Statistics, Old Dominion University, VA 23529, Norfolk, USA

3 Department of Mathematics, King Mongkut’s University of Technology, Thonburi, 10140, Bangkok, Thailand Bangkok, Thailand

4 Departments of Mathematics, COMSATS University, Islamabad 44000, Islamabad, Pakistan

5 School of Energy and Power Engineering, Jiangsu University, 212013 Zhenjiang, China

Abstract

Flow past bluff bodies like square cylinders is important in engineering applications, but flow patterns behind staggered cylinder arrangements remain poorly understood. Existing studies have focused on tandem or side-by-side configurations, while offset orientations have received less attention. The aim of this paper is to numerically investigate flow dynamics and force characteristics behind two offset square cylinders using the single relaxation time lattice Boltzmann method. The effects of changing both the Reynolds number (Re = 1-150) and gap spacing ratio (g* = 0.5-5) between the cylinders are analyzed. Instantaneous vorticity contours, time histories of drag and lift coefficients, power spectra of lift, and force statistics are used to characterize the flow. Different flow regimes have been identified in various ranges of Re and g* - including steady, chaotic, flip-flopping, single-bluff body, and fully developed flows. Larger spacings led to more regular vortex dynamics and force statistics. Smaller spacings promoted complex interactions and modulated forces. Offset cylinder orientation and spacing significantly influence flow features in staggered arrangements. The findings provide new modalities for controlling fluid dynamics past bluff bodies by tuning Re and gap parameters.

Keywords

Main Subjects


Abdulaziz, K. G. A., Mohammed, K. A., Saima, R., & Muhammad, A. (2022). A novel numerical treatment of nonlinear and nonequilibrium model of gradient elution chromatography considering core-shell particles in the column. Mathematical Problems in Engineering, 2022, 1619702–1619702. https://doi.org/10.1155/2022/1619702
Abid, M., Bibi, M., Yasin, N., & Shahid, M. (2024). A Novel computational analysis of boundary driven two-dimensional heat flow with the internal heat generation. Computational Algorithms and Numerical Dimensions. http://dx.doi.org/10.22105/cand.2024.443017.1090
Aboueian, J., & Sohankar, A. (2017). Identification of flow regimes around two staggered square cylinders by a numerical study. Theoretical and Computational Fluid Dynamics, 31(3), 295–315. https://doi.org/10.1007/s00162-017-0424-2
Aboueian, J., Sohankar, A., Rastan, M. R., & Ghodrat, M. (2021). An experimental study on flow over two finite wall-mounted square cylinders in a staggered arrangement. Ocean Engineering, 240, 109954-109954. https://doi.org/10.1016/j.oceaneng.2021.109954
Alam, M. M., Bai, H., & Zhou, Y. (2016). The wake of two staggered square cylinders. Journal of Fluid Mechanics, 801, 475–507. https://doi.org/10.1017/jfm.2016.303 
An, B., Bergada, J. M., Mellibovsky, M., Sang, W. M., & Xi, C. (2020). Numerical investigation on the fow around a square cylinder with an upstream splitter plate at low Reynolds numbers. Meccanica, 55, 1037–1059. https://doi.org/10.1007/s11012-020-01148-8
Bai, X. D., Zhang, W., & Wang, Y. (2020). Deflected oscillatory wake pattern behind two side-by-side circular cylinders. Ocean Engineering, 197, 106847–106847. https://doi.org/10.1016/j.oceaneng.2019.106847
Baranwal, A. K., & Chhabra, R. P. (2016). Free convection in confined power-law fluids from two side-by-side cylinders in a square enclosure. Heat Transfer Engineering, 37(18), 1521–1537. https://doi.org/10.1080/01457632.2016.1151296 
Bhatnagar, P. L., Gross, E. P., & Krook, M. (1954). A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical Review, 94(3), 511–511. https://doi.org/10.1103/PhysRev.94.511
Chatterjee, D., Biswas, G., & Amiroudine, S. (2010). Numerical simulation of flow past row of square cylinders for various separation ratios. Computers & Fluids, 39, 49–59. https://doi.org/10.1016/j.compfluid.2009.07.002
Chen, W., Ji, C., Xu, D., & Srinil, N. (2019). Wake patterns of freely vibrating side-by-side circular cylinders in laminar flows. Journal of Fluids and Structures, 89, 82–95. https://doi.org/10.1016/j.jfluidstructs.2019.02.013 
Dou, H., Zhang, S., Yang, H., Setoguchi, T., & Kinoue, Y. (2018). Effect of rotational speed on the stability of two rotating side-by-side circular cylinders at low reynolds number. Journal of Thermal Science, 27(2), 125–134. https://doi.org/10.1007/s11630-018-0993-4
Furquan, M., & Mittal, S. (2015). Flow past two square cylinders with flexible splitter plates. Computational Mechanics, 55(6), 1155–1166. https://doi.org/10.1007/s00466-014-1110-5
Griffith, M. D., Jacono, D. L., Sheridan, J., & Leontini, J. S. (2017). Flow-induced vibration of two cylinders in tandem and staggered arrangements. Journal of Fluid Mechanics, 833, 98–130. https://doi.org/10.1017/jfm.2017.673
Guo, Z. L., & Shu, C. (2013). Lattice boltzmann method and its applications in engineering. World Scientific Publishing Co. Pte. Ltd., Singapore. http://dx.doi.org/10.1142/8806
Haq, H. B. U., Akram, W., Irshad, M. N., Kosar, A., & Abid, M. (2024). Enhanced real-time facial expression recognition using deep learning. Acadlore Transactions on AI and Machine Learning (ATAIML), 3(1), 24-35. http://dx.doi.org/10.56578/ataiml030103
Hsu, L. C., Chen, C. L., & Ye, J. Z., (2017). A study of flow patterns for staggered cylinders at low Reynolds number by spectral element method. Journal of Mechanical Science and Technology, 31(6), 2765–2780. https://doi.org/10.1007/s12206-017-0520-7
Islam, S. U., Nazeer, G., & Shigri, S. H., (2019). Numerical investigation of different flow regimes for square cylinders in staggered configuration. KSCE Journal of Civil Engineering, 23(5), 2188–2197. https://doi.org/10.1007/s12205-019-0726-6
Kim, S., & Alam, M. M. (2015). Characteristics and suppression of flow-induced vibrations of two side-by-side circular cylinders. Journal of Fluids and Structures, 54, 629–642. https://doi.org/10.1016/j.jfluidstructs.2015.01.004
Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., & Viggen, E. M. (2017). The lattice Boltzmann method. Springer International Publishing, 10(978-3), 4-15. https://doi.10.1007/978-3-319-44649-3
Liu, B., & Jaiman, R. K. (2016). The effect of gap flow on vortex-induced vibration of side-by-side cylinder arrange- ment. International Conference on Offshore Mechanics and Arctic Engineering. https://doi.org/10.1115/OMAE2016-54736
Meneghini, J. R., Saltara, F., Siqueira, C. L. R., & Ferrari, J. A. (2001). Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. Journal of fluids and structures, 15(2), 327–350. https://doi.org/10.1006/jfls.2000.0343
Mohamad, A. A. (2011). Lattice Boltzmann Method. Springer, London. https://doi.org/10.1007/978-1-4471-7423-3
Muhammad, A. A. (2019). Lattice Boltzmann method: fundamental and engineering applications with computer codes. Springer, New York. https://doi.org/10.2514/1.J051744
Murtaza, S. & Ahmad, Z. (2024). Analysis of Clay Based Cementitious Nanofluid Subjected to Newtonian Heating and Slippage Conditions with Constant Proportional Caputo Derivative. GeoStruct Innovations (GSI), 2(2), 53-67. https://doi.org/10.56578/gsi020201
Norberg, C. (1993). Flow around rectangular cylinders: pressure forces and wake frequencies. Journal of Wind Engineering and Industrial Aerodynamics, 49, 187–196. https://doi.org/10.1016/0167-6105(93)90014-F
Octavianty, R., & Asai, M. (2016). Effects of short splitter plates on vortex shedding and sound generation in flow past two side-by-side square cylinders. Experiments in Fluids, 57(9), 1–13. https://doi.org/10.1007/s00348-016-2227-4
Patel, C. G., Sarkar, S., & Saha, S. K. (2018). Mixed convective vertically upward flow past side-by-side square cylinders at incidence. International Journal of Heat and Mass Transfer, 127, 927–947. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.129
Rashidi, S., Keimanesh, M., & Khanjani, M. (2020). Numerical study of entropy generation in heat transfer from tandem square cylinders. International Journal of Thermal Sciences, 154, 106460. https://doi.org/10.1016/j.ijthermalsci.2020.106460
Rehman, N., Abid, M., & Qamar, S., (2021). Numerical approximation of nonlinear and non-equilibrium model of gradient elution chromatography. Journal of Liquid Chromatography & Related Technologies, 44(7-8), 382-394,. https://doi.org/10.1080/10826076.2021.1947316
Robichuax, J., Balachandar, S., & Vanka, S. P. (1999). Three-dimensional floquet instability on the wake of square cylinder. Physics of Fluids, 11(2-3), 560-578. https://doi.org/10.1063/1.869930
Saha, A. K., Biswas, G., & Muralidhar, K. (2003). Three-dimensional study of fow past a square cylinder at low Reynolds numbers. International Journal of Heat and Fluid Flow, 24, 54–66. https://doi.org/10.1016/S0142-727X(02)00208-4
Sanyal, A., & Dhiman, A. (2020). Shear-induced viscosity stratified flow past a pair of heated side-by-side square cylinders in a confined domain. Physics of Fluids, 32(5), 53601-53601. https://doi.org/10.1063/5.0002083
Saqlain, M., Abid, M., Awais, M., & Stević, Ž. (2024). Analysis of software effort estimation by machine learning techniques. Ingénierie des Systèmes d’Information, 28, 1445-1457. http://dx.doi.org/10.18280/isi.280602  
Sharma, A., & Eswaran, V. (2004). Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime. Numerical Heat Transfer, Part A: Applications, 45(3), 247-269. https://doi.org/10.1080/10407780490278562  
Sharma, A., Raj, C. T., Chhabra, R. P., & Sharma, A. (2021). Machine learning modeling for wake turbulence downstream of a wall-mounted square cylinder. Physics of Fluids, 33(11), 115118. https://doi.org/10.1063/5.0063967
Shen, Z., Chen, Z., Xiang, N., Zong, W., & Tian, F. (2021). Numerical investigation and modal analysis of flow past two staggered circular cylinders. Physics of Fluids, 33(8), 085110. https://doi.org/10.1063/5.0058258
Shimizu, Y., & Tanida, Y., (1978). Fluid forces acting on cylinders of rectangular cross-section. Transactions of the Japan Society of Mechanical Engineers-B, 44, 2699–2706. https://doi.org/10.11159/jffhmt.2020.004
Singha, S., Nagarajan, K. K., & Sinhamahapatra, K. P. (2016). Numerical study of two-dimensional flow around two side-by-side circular cylinders at low Reynolds numbers. Physics of Fluids, 28(5), 53603–53603. https://doi.org/10.1063/1.4949332
Tong, F., Cheng, L., & Zhao, M. (2015). Numerical simulations of steady flow past two cylinders in staggered arrangements. Journal of Fluid Mechanics, 765, 114-149. https://doi.org/10.1017/jfm.2014.708
Veena, V., Muddada, S., & Eldho, T. I. (2020). Flow-induced vibration characteristics of elastically mounted rigid square cylinders in tandem arrangements. Journal of Fluids and Structures, 100, 103149. https://doi.org/10.1016/j.jfluidstructs.2020.103149
Vinodh, A., & Supradeepan, K. (2020). A numerical study on influence of the control cylinder on two side-by-side cylinders. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(4), 1–12. https://doi.org/10.1007/s40430-020-2264-z
Vu, H. C., Ahn, J., & Hwang, J. H. (2016). Numerical simulation of flow past two circular cylinders in tandem and side-by-side arrangement at low Reynolds numbers. KSCE Journal of Civil Engineering, 20(4), 1594–1604. https://doi.org/10.1007/s12205-015-0602-y
Wolf-Gladrow, D. A. (2004). Lattice-gas cellular automata and lattice Boltzmann models: an introduction. Springer. https://doi.org/10.1007/b72010
Woyciekoski, M. L., Endres, L. A. M., Paula, A. V. D., & Mo¨ller, S. V. (2020). Influence of the free end flow on the bistability phenomenon after two side by side finite height cylinders with aspect ratios of 3 and 4 and high blockage. Ocean Engineering, 195, 106658–106658. http://dx.doi.org/10.1016/j.oceaneng.2019.106658
Wu, G., Du, X., & Wang, Y. (2020). LES of flow around two staggered circular cylinders at a high subcritical Reynolds number of 1.4× 105. Journal of Wind Engineering and Industrial Aerodynamics, 104044–104044. https://doi.org/10.1016/j.jweia.2019.104044
Wu, X. D., Liu, H. P., & Chen, F. (2018). Numerical investigation of flow characteristics around two side-by-side cylinders by immersed boundary-lattice Boltzmann flux solver. Journal of Zhejiang University-Science A, 19(5), 384–398. 384–398. http://doi.org/10.1631/jzus.A1700112
Xu, W., Qin, W., & Yu, Y. (2020). Flow-induced vibration of two identical long flexible cylinders in a staggered arrangement. International Journal of Mechanical Sciences, 180, 105637–105637. https://doi.org/10.1016/j.ijmecsci.2020.105637
Zhang, C., Kang, Z., Xiong, Y., Ai, S., & Ma, G., (2021). Experimental investigation on coupled crossflow and in-line vortex-induced vibration responses of two staggered circular cylinders. Proceedings of the Institution of Mechanical Engineers, 235, 288–300. https://doi.org/10.1177/1475090220907473
Zhang, W., Li, X., and Zhu, Z., (2019). Quantification of wake unsteadiness for low-Re flow across two staggered cylinders. Proceedings of the Institution of Mechanical Engineers, 233, 6892–6909. https://doi.org/10.1177/0954406219866478
Zhang, Y., Sheng, L., Duan, J., Chen, K., & You, Y., (2018). LBM simulation of flow around an oscillating cylinder and a stationary cylinder in side-by-side arrangement. International Conference on Offshore Mechanics and Arctic Engineering. https://doi.org/10.1115/OMAE2018-77133
Zhou, C. Y. (2021). Flow control around two side-by-side square cylinders using dual splitter plates. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(2), 1–28. https://doi.org/10.1007/s40430-020-02795-4
Zhou, Y., Nagata, K., Sakai, Y., Watanabe, T., Ito, Y., & Hayase, T. (2020). Energy transfer in turbulent flows behind two side-by-side square cylinders. Journal of Fluid Mechanics, 903–903. https://doi.org/10.1017/jfm.2020.611
Zhou, Y., Wang, Z., Qian, Y., Yang, H., & Wei, Y., (2021). Numerical simulation of the flow around two square cylinders using the lattice Boltzmann method. Physics of Fluids, 33(3), 37110–37110. https://doi.org/10.1063/5.0040020