Experimental and Numerical Investigation for Predicting the Performance of Voluteless Centrifugal Fan Rotors

Document Type : Regular Article

Authors

Federal University of Itajubá, Itajubá, Minas Gerais, Zip Code 37500-903, Brazil

Abstract

A better understanding of the flow field is crucial for improving the design of a turbomachine. In this work we investigate the performance of voluteless centrifugal fan rotors. The study includes two parts: experiments and numerical simulations through Computational Fluid Dynamics (CFD) techniques. Our test system allows the analysis of the flow behavior of centrifugal fan rotors maintaining the meridional shape without making substantial changes to their internal structure, but with different blade shapes, sizes, and blade numbers. To avoids irregular interference with the rotor flow from external components such as the collector a radial channel composed by two parallel discs was placed concentrically on the rotor axis at its outer periphery with special interest in measuring flow characteristics at the rotor outlet with a reliable accuracy. As an application case a typical centrifugal fan rotor with ten blades of single curvature in the circular arc shape has been investigated. Two types of measuring systems were used: one, with an aerodynamic probe located in the centrifugal rotor outlet and, the other, with a load cell for measuring the rotor shaft power. A comparison of the results by these two measuring arrangements shows some important characteristics, such as the phenomenon of the flow recirculation within the rotor. The experimental performance curves related to non-dimensional flow such as the slip factor, and pressure coefficient, revealed good matching with numerical simulations, highlighting the remarkable reliability of our experimental setup.

Keywords

Main Subjects


Abdolahnejad, E., Moghimi, M., & Derakhshan, S. (2021). Experimental and numerical investigation of slip factor reduction in centrifugal slurry pump. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(4), 1–14. https://doi.org/10.1007/s40430-021-02831-x
Angulo, T. M. A., Camacho, R. G. R., de Oliveira, W., da Silva, E. R., & Río, G. E. N. (2022). Free and Non-Free vortex design for axial fans with circumferential sweep through CFD techniques. Journal of Applied Fluid Mechanics, 15(4), 1017–1034. https://doi.org/10.47176/jafm.15.04.33209
Ansys Inc. (2012). Ansys Fluent Theory guide. USA.
Benedict, R. P. (1977). Fundamentals of temperature, pressure, and flow measurements. John Wiley & Sons, Inc. https://doi.org/10.1017/S0022112078211780
Carolus, T. H., McLaughlin, D. K., & Basile, R. (2000, July). Experimental investigation of the unsteady discharge flow field and the noise of a centrifugal fan impeller. 7th International Congress on Sound and Vibration. https://doi.org/10.3390/pr11072116
Cui, H., & Chen, C. (2017). Effects of the installation of driven motor at the impeller eye on performance of volute-free centrifugal fan. ASME International Mechanical Engineering Congress and Exposition, Vol. 50619, V007T09A081. https://doi.org/10.1115/IMECE2016-67609
Datong, Q., Yijun, M., Xiaoliang, L., & Minjian, Y. (2009). Experimental study on the noise reduction of an industrial forward-curved blades centrifugal fan. Applied Acoustics, 70(8), 1041–1050. https://doi.org/10.1016/j.apacoust.2009.03.002
de Oliveira, W. (1999). Características do escoamento em rotores centrífugos, Parte I: Análise teórica, Parte II: Análise experimental”, DME/IEM/EFEI, Itajubá, MG.
Eck., D. I. B. (1973). Design and operation of centrifugal, axial-flow and cross-flow fans. Pergamon Press
Eckardt, D. (1980). Flow field analysis of radial and backswept centrifugal compressor impellers. Part 2: comparison of potential flow calculated and measurements. Twenty-Fifth Annual International Gas Turbine Conference. https://ui.adsabs.harvard.edu/abs/1979ppcp.proc...77E/abstract
Figliola, R. S., & Beasley, D. E. (1991). Theory and design for mechanical measurement. https://doi10.1088/0957-0233/12/10/701
Glaser, A. H. (1952). The Pitot cylinder as a static pressure probe in turbulent flow. Journal Sciences Instruments, 29, 219–221. https://doi10.1088/0950-7671/29/7/306
Guo, E. M., & Kim, K. Y. (2003). Three-dimensional flow analysis and improvement of slip factor model for forward-curved blades centrifugal fan. Proceedings of the ASME/JSME Joint Fluids Engineering Conference, 2 B, 1203–1211. https://doi.org/10.1115/fedsm2003-45404
Heo, M. W., Kim, J. H., & Kim, K. Y. (2015). Design optimization of a centrifugal fan with splitter blades. International Journal of Turbo and Jet Engines, 32(2), 143–154. https://doi.org/10.1515/tjj-2014-0026
Huang, J. M., Luo, K. W., Chen, C. F., Chiang, C. P., Wu, T. Y., & Chen, C. H. (2013). Numerical investigations of slip phenomena in centrifugal compressor impellers. International Journal of Turbo and Jet Engines, 30(1), 123–132. https://doi.org/10.1515/tjj-2012-0021
ISO 5168 (2005). Measurement of fluid flow - Evaluation of uncertainties. British Standards Institution. https://www.iso.org/standard/32199.html
ISO 5801 (2017). Performance testing using standardized airways. https://www.iso.org/standard/56517.html
Koupper, C., Poinsot, T., Gicquel, L., & Duchaine, F. (2014). Compatibility of characteristic boundary conditions with radial equilibrium in turbomachinery simulations. AIAA Journal, 52(12), 2829–2839. https://doi.org/10.2514/1.J052915
Meakhail, T., & Park, S. O. (2004). A study of impeller-diffuser-volute interaction in a centrifugal fan. Turbo Expo: Power for Land, Sea, and Air. https://doi.org/10.1115/GT2004-53068
Menter, F. R. (1992). Influence of freestream values on k-ω turbulence model predictions. AIAA Journal, 30(6), 1657–1659. https://doi.org/10.2514/3.11115
Ng, C. K., & Ferguson, T. B. (1983). A note on the blockage of cylindrical probes. Proceedings of the Seventh Conference on Fluid Machinery.
Ottersten, M., Yao, H. D., & Davidson, L. (2021). Tonal noise of voluteless centrifugal fan generated by turbulence stemming from upstream inlet gap. Physics of Fluids, 33(7), 1–16. https://doi.org/10.1063/5.0055242
Ottersten, M., Yao, H., & Davidson, L. (2018). Unsteady simulation of tonal noise from isolated centrifugal fan. Proceedings of Fan 2018 - International Conference on Fan Noise, Aerodynamics, Applications and Systems. https://doi.org/10.31224/osf.io/yx7rj
Pfleiderer, C. (1960). Bombas centrífugas y turbocompresores (Editorial Labor S. A.).
Stanitz, J. D. (1952). Some theoretical aerodynamics investigations of impellers in radial and mixed flow centrifugal compressors. Transactions of the ASME,. 74, 473–497. https://doi.org/10.1115/1.4015817
Stodola, A. Bohuslav, & Loewenstein, L. Centennial. (1927). Steam and gas turbines : with a supplement on The prospects of the thermal prime mover. New York: McGraw-Hill.
Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: the finite volume method. Pearson education.
Wei, Y., Zhu, L., Zhang, W., & Wang, Z. (2019). Numerical and experimental investigations on the flow and noise characteristics in a centrifugal fan with step tongue volutes. https://doi.org/10.1177/0954406219890920
Westphal, R. V., & Ortega, A. (2004, July). Cascade throat flow measurements using a rotatable single-hole pressure probe. 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. https://doi.org/10.2514/6.2004-2601
Wiesner, F. J. (1967). A review of slip factors for centrifugal impellers. Journal of Engineering for Gas Turbines and Power, 89(4), 558–566. https://doi.org/10.1115/1.3616734
Zeleke, W. A., Hughes, T. L., & Drozda, N. (2020). Home–school collaboration to promote mind– body health. In C. Maykel & M. A. Bray (Eds.), Promoting mind–body health in schools: Interventions for mental health professionals (pp. 11–26). American Psychological Association. https://doi.org/10.1037/0000157-002
Zhang, J., Chu, W., Zhang, H., Wu, Y., & Dong, X. (2016). Numerical and experimental investigations of the unsteady aerodynamics and aero-acoustics characteristics of a backward curved blade centrifugal fan. Applied Acoustics, 110, 256–267. https://doi.org/10.1016/j.apacoust.2016.03.012
Zienkiewicz, O. C., & Taylor, R. L. . (1989). The finite element method. ISBN: 0 7506 5055 9.