Baizhuma, Z., Kim, T., & Son, C. (2021). Numerical method to predict ice accretion shapes and performance penalties for rotating vertical axis wind turbines under icing conditions.
Journal of Wind Engineering and Industrial Aerodynamics,
216, 104708.
https://doi.org/10.1016/j.jweia.2021.104708
Gao, L., & Hu, H. (2021). Wind turbine icing characteristics and icing-induced power losses to utility-scale wind turbines.
Proceedings of the National Academy of Sciences,
118(42), e2111461118.
https://doi.org/10.1073/pnas.2111461118
Gao, L., Tao, T., Liu, Y., & Hu, H. (2021). A field study of ice accretion and its effects on the power production of utility-scale wind turbines. Renewable Energy, 167, 917-928. https://doi.org/10.1016/j.renene.2020.12.014
Guo, W., Shen, H., Li, Y., Feng, F., & Tagawa, K. (2021a). Wind tunnel tests of the rime icing characteristics of a straight-bladed vertical axis wind turbine.
Renewable Energy,
179, 116-132.
https://doi.org/10.1016/j.renene.2021.07.033
Guo, W., Zhang, Y., Li, Y., Tagawa, K., & Zhao, B. (2021b). A Wind Tunnel Experimental Study on the Icing Characteristics of a Cylinder Rotating around a Vertical Axis.
Applied Sciences,
11(21), 10383.
https://doi.org/10.3390/app112110383
Hu, L., Zhu, X., Chen, J., Shen, X., & Du, Z. (2018). Numerical simulation of rime ice on NREL Phase VI blade.
Journal of Wind Engineering and Industrial Aerodynamics,
178, 57-68.
https://doi.org/10.1016/j.jweia.2018.05.007
Hu, L., Zhu, X., Hu, C., Chen, J., & Du, Z. (2017). Wind turbines ice distribution and load response under icing conditions.
Renewable Energy,
113, 608-619.
https://doi.org/10.1016/j.renene.2017.05.059
Ibrahim, G., Pope, K., & Muzychka, Y. (2018). Effects of blade design on ice accretion for horizontal axis wind turbines.
Journal of Wind Engineering and Industrial Aerodynamics,
173, 39-52.
https://doi.org/10.1016/j.jweia.2017.11.024
Imran, R. M., Hussain, D. A., & Soltani, M. (2016). An experimental analysis of the effect of icing on Wind turbine rotor blades. 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), https://doi.org /10.1109/TDC.2016.7520041
Jin, J. Y., & Virk, M. S. (2020a). Effect of Wind Turbine Blade Profile Surface Roughness on Ice Accretion–A Numerical Case Study. IOP Conference Series: Earth and Environmental Science, https://doi.org /10.1088/1755-1315/603/1/012045
Kreutz, M., Ait-Alla, A., Varasteh, K., Oelker, S., Greulich, A., Freitag, M., & Thoben, K.-D. (2019). Machine learning-based icing prediction on wind turbines.
Procedia Cirp,
81, 423-428.
https://doi.org/10.1016/j.procir.2019.03.073
Lamraoui, F., Fortin, G., Benoit, R., Perron, J., & Masson, C. (2014). Atmospheric icing impact on wind turbine production.
Cold Regions Science and Technology,
100, 36-49.
https://doi.org/10.1016/j.coldregions.2013.12.008
Li, Y., Shi, L., Guo, W., Sun, C., & Jiang, Y. (2020). Wind Tunnel Test of the Icing Characteristics of Airfoil Rotating around a Vertical Axis.
International Journal of Rotating Machinery,
2020, 1-17.
https://doi.org/10.1155/2020/8841076
Li, Y., Sun, C., Jiang, Y., & Feng, F. (2019a). Scaling method of the rotating blade of a wind turbine for a rime ice wind tunnel test.
Energies,
12(4), 627.
https://doi.org/10.3390/en12040627
Li, Y., Sun, C., Jiang, Y., Yi, X., & Zhang, Y. (2019b). Effect of liquid water content on blade icing shape of horizontal axis wind turbine by numerical simulation.
Thermal Science,
23(3 Part A), 1637-1645.
https://doi.org/10.2298/TSCI180627234L
Li, Y., Tagawa, K., & Liu, W. (2010). Performance effects of attachment on blade on a straight-bladed vertical axis wind turbine.
Current Applied Physics,
10(2), S335-S338.
https://doi.org/10.1016/j.cap.2009.11.072
Li, Y., Tagawa, K., Feng, F., Li, Q., & He, Q. (2014). A wind tunnel experimental study of icing on wind turbine blade airfoil.
Energy Conversion and Management,
85, 591-595.
https://doi.org/10.1016/j.enconman.2014.05.026
Li, Y., Tang, J., Liu, Q., Wang, S., & Feng, F. (2015). A visualization experimental study of icing on blade for VAWT by wind tunnel test. 2015 International conference on power electronics and energy engineering, https://doi.org /
10.2991/peee-15.2015.39
Li, Y., Wang, S., Liu, Q., Feng, F., & Tagawa, K. (2018a). Characteristics of ice accretions on blade of the straight-bladed vertical axis wind turbine rotating at low tip speed ratio.
Cold Regions Science and Technology,
145, 1-13.
https://doi.org/10.1016/j.coldregions.2017.09.001
Li, Y., Wang, S., Sun, C., Yi, X., Guo, W., Zhou, Z., & Feng, F. (2018b). Icing distribution of rotating blade of horizontal axis wind turbine based on Quasi-3D numerical simulation.
Thermal Science,
22 (Suppl. 2), 681-691. https://doi.org /
10.2298/TSCI170821053L
Maeda, T., Kamada, Y., Hiromori, Y., Nakai, A., & Kasuya, T. (2017). Study on stall behavior of a straight-bladed vertical axis wind turbine with numerical and experimental investigations.
Journal of Wind Engineering and Industrial Aerodynamics,
164, 1-12.
https://doi.org/10.1016/j.jweia.2017.02.005
Maeda, T., Kamada, Y., Murata, J., Furukawa, K., & Yamamoto, M. (2015). Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine.
Energy,
90, 784-795.
https://doi.org/10.1016/j.energy.2015.07.115
Maeda, T., Kamada, Y., Murata, J., Kawabata, T., Shimizu, K., Ogasawara, T., Kasuya, T. (2016). Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance).
Energy,
106, 443-452.
https://doi.org/10.1016/j.energy.2016.03.089
Sagol, E. (2014).
Three Dimensional Numerical Predicton of Icing Related Power and Energy Losses on a Wind Turbine École Polytechnique de Montréal].
https://publications.polymtl.ca/1476/
Shi, L., Li, Y., Guo, W., & Sun, C. (2021). Experimental Research on the Similarity of Rime Icing on a Cylinder Rotating around Its Horizontal Axis.
International Journal of Rotating Machinery,
2021, 1-14.
https://doi.org/10.1155/2021/9986733
Shu, L., Li, H., Hu, Q., Jiang, X., Qiu, G., He, G., & Liu, Y. (2018a). 3D numerical simulation of aerodynamic performance of iced contaminated wind turbine rotors.
Cold Regions Science and Technology,
148, 50-62.
https://doi.org/10.1016/j.coldregions.2018.01.008
Shu, L., Li, H., Hu, Q., Jiang, X., Qiu, G., McClure, G., & Yang, H. (2018b). Study of ice accretion feature and power characteristics of wind turbines at natural icing environment.
Cold Regions Science and Technology,
147, 45-54.
https://doi.org/10.1016/j.coldregions.2018.01.006
Shu, L., Liang, J., Hu, Q., Jiang, X., Ren, X., & Qiu, G. (2017). Study on small wind turbine icing and its performance.
Cold Regions Science and Technology,
134, 11-19.
https://doi.org/10.1016/j.coldregions.2016.11.004
Turkyilmazoglu, M. (2002a). Flow in the vicinity of the trailing edge of Joukowski-type profiles. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 458(2023), 1653-1672.
https://doi.org/10.1098/rspa.2001.0942
Turkyilmazoglu, M., GajjarRID=" 1" ID=" 1" All correspondence should be addressed to Dr. JSB Gajjar, J. S. B., & Ruban, A. I. (1999). The absolute instability of thin wakes in an incompressible/compressible fluid. Theoretical and computational fluid dynamics, 13, 91-114.https://doi.org/10.1007/S001620050006
Wang, Q., Yi, X., Liu, Y., Ren, J., Li, W., Wang, Q., & Lai, Q. (2020). Simulation and analysis of wind turbine ice accretion under yaw condition via an Improved Multi-Shot Icing Computational Model.
Renewable Energy,
162, 1854-1873.
https://doi.org/10.1016/j.renene.2020.09.107
Yang, Y., Guo, Z., Song, Q., Zhang, Y., & Li, Q. a. (2018). Effect of blade pitch angle on the aerodynamic characteristics of a straight-bladed vertical axis wind turbine based on experiments and simulations.
Energies,
11(6), 1514.
https://doi.org/10.3390/en11061514
Yirtici, O., Ozgen, S., & Tuncer, I. H. (2019). Predictions of ice formations on wind turbine blades and power production losses due to icing.
Wind Energy,
22(7), 945-958.
https://doi.org/10.1002/we.2333
Zhu, C., Zhu, C., Guo, T., & Liu, L. (2015). Development and Validation of Aircraft Icing Computational Simulation Code. 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015).https://doi.org /
10.2991/icicci-15.2015.14
Zhu, X., Hu, L., Chen, J., Shen, X., & Du, Z. (2018). Calculation of Collection Efficiency on NREL Phase VI Blade.
Journal of Energy Resources Technology,
140(7), 071202.
https://doi.org/10.1115/1.4039349