A Numerical Study on Effects of Ice Formation on Vertical-axis Wind Turbine Performance and Flow Field at Optimal Tip Speed Ratio

Document Type : Regular Article

Authors

1 Department of Mechanical Engineering, Arak University of Technology, Arak, Iran

2 Faculty of Engineering, University of Ayatollah Alozma Boroujerdi, Boroujerd, Iran

Abstract

Wind turbines can freeze due to exposure to cold air. Ice formation on the rotor blades of a wind turbine reduces their performance. In the present work, the effects of ice formation on rotor blades of straight-blade vertical-axis wind turbines (SBVAWT) with a three-blade rotor and a NACA 0021 airfoil are numerically evaluated under two-dimensional transient settings by solving the continuity, momentum and turbulence equations become in ANSYS FLUENT. Grid and time step independence was investigated. For validation, the numerical model was compared with experimental data. An experimental ice model from the literature was then used to numerically simulate the iced rotor in two-dimensional transition settings. The numerical simulation of the icy rotor was compared with an ice-free rotor. It was found that ice formation on the rotor blades changed the velocity and pressure fields around the rotor blades at angles of 180—360°, changing the streamlines and increasing the vortices. Furthermore, the maximum and minimum reductions in moment coefficient during blade icing occurred at angles of 225—315° and 45—135°, respectively. Due to ice formation on the rotor blades, the power coefficient of the rotor blades at angles 180—360° decreased drastically, and the power coefficient of the iced rotor was smaller than that of an ice-free rotor. It was concluded that ice formation on the blades of the SBVAWT reduced the average power coefficient of the blades and rotor power coefficient by 94.2% and 95%, respectively.

Keywords

Main Subjects


Baizhuma, Z., Kim, T., & Son, C. (2021). Numerical method to predict ice accretion shapes and performance penalties for rotating vertical axis wind turbines under icing conditions. Journal of Wind Engineering and Industrial Aerodynamics, 216, 104708. https://doi.org/10.1016/j.jweia.2021.104708
Ebrahimi, A., Hajipour, M., & Hasheminasab, H. (2016). Experimental investigation on the aerodynamic performance of NLF-0414 iced-airfoil. Journal of Applied Fluid Mechanics, 9(2), 587-592. https://doi.org/10.18869/acadpub.jafm.68.225.24606
Gao, L., & Hong, J. (2021). Wind turbine performance in natural icing environments: A field characterization. Cold Regions Science and Technology, 181, 103193. https://doi.org/10.1016/j.coldregions.2020.103193
Gao, L., & Hu, H. (2021). Wind turbine icing characteristics and icing-induced power losses to utility-scale wind turbines. Proceedings of the National Academy of Sciences, 118(42), e2111461118. https://doi.org/10.1073/pnas.2111461118
Gao, L., Tao, T., Liu, Y., & Hu, H. (2021). A field study of ice accretion and its effects on the power production of utility-scale wind turbines. Renewable Energy, 167, 917-928. https://doi.org/10.1016/j.renene.2020.12.014
Guo, W., Shen, H., Li, Y., Feng, F., & Tagawa, K. (2021a). Wind tunnel tests of the rime icing characteristics of a straight-bladed vertical axis wind turbine. Renewable Energy, 179, 116-132. https://doi.org/10.1016/j.renene.2021.07.033
Guo, W., Zhang, Y., Li, Y., Tagawa, K., & Zhao, B. (2021b). A Wind Tunnel Experimental Study on the Icing Characteristics of a Cylinder Rotating around a Vertical Axis. Applied Sciences, 11(21), 10383. https://doi.org/10.3390/app112110383
Howell, R., Qin, N., Edwards, J., & Durrani, N. (2010). Wind tunnel and numerical study of a small vertical axis wind turbine. Renewable Energy, 35(2), 412-422. https://doi.org/10.1016/j.renene.2009.07.025
Hu, L., Zhu, X., Chen, J., Shen, X., & Du, Z. (2018). Numerical simulation of rime ice on NREL Phase VI blade. Journal of Wind Engineering and Industrial Aerodynamics, 178, 57-68. https://doi.org/10.1016/j.jweia.2018.05.007
Hu, L., Zhu, X., Hu, C., Chen, J., & Du, Z. (2017). Wind turbines ice distribution and load response under icing conditions. Renewable Energy, 113, 608-619. https://doi.org/10.1016/j.renene.2017.05.059
Ibrahim, G., Pope, K., & Muzychka, Y. (2018). Effects of blade design on ice accretion for horizontal axis wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 173, 39-52. https://doi.org/10.1016/j.jweia.2017.11.024
Imran, R. M., Hussain, D. A., & Soltani, M. (2016). An experimental analysis of the effect of icing on Wind turbine rotor blades. 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), https://doi.org /10.1109/TDC.2016.7520041
Jin, J. Y., & Virk, M. S. (2020a). Effect of Wind Turbine Blade Profile Surface Roughness on Ice Accretion–A Numerical Case Study. IOP Conference Series: Earth and Environmental Science, https://doi.org /10.1088/1755-1315/603/1/012045
Jin, J. Y., & Virk, M. S. (2020b). Experimental study of ice accretion on S826 & S832 wind turbine blade profiles. Cold Regions Science and Technology, 169, 102913. https://doi.org/10.1016/j.coldregions.2019.102913
Kreutz, M., Ait-Alla, A., Varasteh, K., Oelker, S., Greulich, A., Freitag, M., & Thoben, K.-D. (2019). Machine learning-based icing prediction on wind turbines. Procedia Cirp, 81, 423-428. https://doi.org/10.1016/j.procir.2019.03.073
Lamraoui, F., Fortin, G., Benoit, R., Perron, J., & Masson, C. (2014). Atmospheric icing impact on wind turbine production. Cold Regions Science and Technology, 100, 36-49. https://doi.org/10.1016/j.coldregions.2013.12.008
Li, Y., Shi, L., Guo, W., Sun, C., & Jiang, Y. (2020). Wind Tunnel Test of the Icing Characteristics of Airfoil Rotating around a Vertical Axis. International Journal of Rotating Machinery, 2020, 1-17.  https://doi.org/10.1155/2020/8841076
Li, Y., Sun, C., Jiang, Y., & Feng, F. (2019a). Scaling method of the rotating blade of a wind turbine for a rime ice wind tunnel test. Energies, 12(4), 627. https://doi.org/10.3390/en12040627
Li, Y., Sun, C., Jiang, Y., Yi, X., & Zhang, Y. (2019b). Effect of liquid water content on blade icing shape of horizontal axis wind turbine by numerical simulation. Thermal Science, 23(3 Part A), 1637-1645. https://doi.org/10.2298/TSCI180627234L
Li, Y., Tagawa, K., & Liu, W. (2010). Performance effects of attachment on blade on a straight-bladed vertical axis wind turbine. Current Applied Physics, 10(2), S335-S338. https://doi.org/10.1016/j.cap.2009.11.072
Li, Y., Tagawa, K., Feng, F., Li, Q., & He, Q. (2014). A wind tunnel experimental study of icing on wind turbine blade airfoil. Energy Conversion and Management, 85, 591-595. https://doi.org/10.1016/j.enconman.2014.05.026
Li, Y., Tang, J., Liu, Q., Wang, S., & Feng, F. (2015). A visualization experimental study of icing on blade for VAWT by wind tunnel test. 2015 International conference on power electronics and energy engineering, https://doi.org /10.2991/peee-15.2015.39
Li, Y., Wang, S., Liu, Q., Feng, F., & Tagawa, K. (2018a). Characteristics of ice accretions on blade of the straight-bladed vertical axis wind turbine rotating at low tip speed ratio. Cold Regions Science and Technology, 145, 1-13. https://doi.org/10.1016/j.coldregions.2017.09.001
Li, Y., Wang, S., Sun, C., Yi, X., Guo, W., Zhou, Z., & Feng, F. (2018b). Icing distribution of rotating blade of horizontal axis wind turbine based on Quasi-3D numerical simulation. Thermal Science, 22 (Suppl. 2), 681-691. https://doi.org /10.2298/TSCI170821053L
Maeda, T., Kamada, Y., Hiromori, Y., Nakai, A., & Kasuya, T. (2017). Study on stall behavior of a straight-bladed vertical axis wind turbine with numerical and experimental investigations. Journal of Wind Engineering and Industrial Aerodynamics, 164, 1-12. https://doi.org/10.1016/j.jweia.2017.02.005
Maeda, T., Kamada, Y., Murata, J., Furukawa, K., & Yamamoto, M. (2015). Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine. Energy, 90, 784-795. https://doi.org/10.1016/j.energy.2015.07.115
Maeda, T., Kamada, Y., Murata, J., Kawabata, T., Shimizu, K., Ogasawara, T., Kasuya, T. (2016). Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance). Energy, 106, 443-452. https://doi.org/10.1016/j.energy.2016.03.089
Manatbayev, R., Baizhuma, Z., Bolegenova, S., & Georgiev, A. (2021). Numerical simulations on static Vertical Axis Wind Turbine blade icing. Renewable Energy, 170, 997-1007. https://doi.org/10.1016/j.renene.2021.02.023
Sagol, E. (2014). Three Dimensional Numerical Predicton of Icing Related Power and Energy Losses on a Wind Turbine École Polytechnique de Montréal].https://publications.polymtl.ca/1476/
Shi, L., Li, Y., Guo, W., & Sun, C. (2021). Experimental Research on the Similarity of Rime Icing on a Cylinder Rotating around Its Horizontal Axis. International Journal of Rotating Machinery, 2021, 1-14. https://doi.org/10.1155/2021/9986733
Shu, L., Li, H., Hu, Q., Jiang, X., Qiu, G., He, G., & Liu, Y. (2018a). 3D numerical simulation of aerodynamic performance of iced contaminated wind turbine rotors. Cold Regions Science and Technology, 148, 50-62.https://doi.org/10.1016/j.coldregions.2018.01.008
Shu, L., Li, H., Hu, Q., Jiang, X., Qiu, G., McClure, G., & Yang, H. (2018b). Study of ice accretion feature and power characteristics of wind turbines at natural icing environment. Cold Regions Science and Technology, 147, 45-54.https://doi.org/10.1016/j.coldregions.2018.01.006
Shu, L., Liang, J., Hu, Q., Jiang, X., Ren, X., & Qiu, G. (2017). Study on small wind turbine icing and its performance. Cold Regions Science and Technology, 134, 11-19. https://doi.org/10.1016/j.coldregions.2016.11.004
Son, C., & Kim, T. (2020). Development of an icing simulation code for rotating wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 203, 104239. https://doi.org/10.1016/j.jweia.2020.104239
Son, C., Kelly, M., & Kim, T. (2021). Boundary-layer transition model for icing simulations of rotating wind turbine blades. Renewable Energy, 167, 172-183. https://doi.org/10.1016/j.renene.2020.11.070
Turkyilmazoglu, M. (2002a). Flow in the vicinity of the trailing edge of Joukowski-type profiles. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 458(2023), 1653-1672.https://doi.org/10.1098/rspa.2001.0942
Turkyilmazoglu, M. (2002b). The absolute instability of Joukowski-type airfoils. Theoretical and computational fluid dynamics, 15(4), 255-264. https://doi.org/10.1007/s001620100053
Turkyilmazoglu, M., GajjarRID=" 1" ID=" 1" All correspondence should be addressed to Dr. JSB Gajjar, J. S. B., & Ruban, A. I. (1999). The absolute instability of thin wakes in an incompressible/compressible fluid. Theoretical and computational fluid dynamics, 13, 91-114.https://doi.org/10.1007/S001620050006
Wang, Q., Yi, X., Liu, Y., Ren, J., Li, W., Wang, Q., & Lai, Q. (2020). Simulation and analysis of wind turbine ice accretion under yaw condition via an Improved Multi-Shot Icing Computational Model. Renewable Energy, 162, 1854-1873. https://doi.org/10.1016/j.renene.2020.09.107
Yang, Y., Guo, Z., Song, Q., Zhang, Y., & Li, Q. a. (2018). Effect of blade pitch angle on the aerodynamic characteristics of a straight-bladed vertical axis wind turbine based on experiments and simulations. Energies, 11(6), 1514. https://doi.org/10.3390/en11061514
Yirtici, O., & Tuncer, I. H. (2021). Aerodynamic shape optimization of wind turbine blades for minimizing power production losses due to icing. Cold Regions Science and Technology, 185, 103250. https://doi.org/10.1016/j.coldregions.2021.103250
Yirtici, O., Ozgen, S., & Tuncer, I. H. (2019). Predictions of ice formations on wind turbine blades and power production losses due to icing. Wind Energy, 22(7), 945-958. https://doi.org/10.1002/we.2333
Zhu, C., Zhu, C., Guo, T., & Liu, L. (2015). Development and Validation of Aircraft Icing Computational Simulation Code. 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015).https://doi.org /10.2991/icicci-15.2015.14
Zhu, X., Hu, L., Chen, J., Shen, X., & Du, Z. (2018). Calculation of Collection Efficiency on NREL Phase VI Blade. Journal of Energy Resources Technology, 140(7), 071202. https://doi.org/10.1115/1.4039349