Ai, B., Gao, J., Hao, B., Guo, B., & Liang, J. (2023). Effect of obstacle length variation on hydrogen deflagration in a confined space based on large eddy simulations.
Journal of Applied Fluid Mechanics,
17(2), 384-397.
https://doi.org/10.47176/jafm.17.02.2106
Alibert, D., Coutin, M., Mense, M., Pizzo, Y., & Porterie, B. (2019). Effect of oxygen on the burning behavior of liquid and solid fuels in a large-scale calorimeter.
Journal of Applied Fluid Mechanics,
12, 37-47.
https://doi.org/10.36884/jafm.12.SI.29932
Bychkov, V., Akkerman, V. Y., Fru, G., Petchenko, A., & Eriksson, L. E. (2007). Flame acceleration in the early stages of burning in tubes.
Combustion and Flame,
150(4), 263-276.
https://doi.org/https://doi.org/10.1016/j.combustflame.2007.01.004
Cao, W., Zhou, Z., Zhou, W., Xu, S., Xiao, Q., Cao, W., Jiao, F., Zhang, Y., Yu, S., & Xu, S. (2022). The flow field behaviours of under-expansion jet flame in premixed hydrogen/air explosion venting.
International Journal of Hydrogen Energy,
47(18), 10420-10430.
https://doi.org/https://doi.org/10.1016/j.ijhydene.2022.01.082
Chen, P., Sun, Y., Li, Y., & Luo, G. (2017). Experimental and LES investigation of premixed methane/air flame propagating in an obstructed chamber with two slits.
Journal of Loss Prevention in the Process Industries,
49, 711-721.
https://doi.org/https://doi.org/10.1016/j.
jlp.2016.11.005
Cheng, F., Chang, Z., Luo, Z., Liu, C., Wang, T., & He, C. (2020). Large eddy simulation and experimental study of the effect of wire mesh on flame behaviours of methane/air explosions in a semi-confined pipe.
Journal of Loss Prevention in the Process Industries,
68, 104258.
https://doi.org/https://doi.org/10.1016/j.jlp.2020.104258
Ciccarelli, G., Chaumeix, N., Mendiburu, A. Z., N'Guessan, K., & Comandini, A. (2019). Fast-flame limit for hydrogen/methane-air mixtures.
Proceedings of the Combustion Institute,
37(3), 3661-3668.
https://doi.org/https://doi.org/10.1016/j.proci.2018.06.045
Gao, J. F., Ai, B. J., Hao, B., Guo, B. G., Hong, B. Y., & Jiang, X. S. (2022). Effect of obstacles gradient arrangement on non-uniformly distributed LPG-air premixed gas deflagration.
Energies,
15(19), 6872.
https://doi.org/10.3390/en15196872
Giurcan, V., Mitu, M., Movileanu, C., Razus, D., & Oancea, D. (2020). Influence of inert additives on small-scale closed vessel explosions of propane-air mixtures.
Fire Safety Journal,
111, 102939.
https://doi.org/https://doi.org/10.1016/j.firesaf.2019.102939
Hao, B., Gao, J. F., Guo, B. G., Ai, B. J., Hong, B. Y., & Jiang, X. S. (2022). Numerical simulation of premixed methane-air explosion in a closed tube with U-type obstacles.
Energies,
15(13), 4909.
https://doi.org/10.3390/en15134909
Jiang, Y., Gao, W., Sun, Z., Liang, B., Zhang, K., & Li, Y. (2023). Experimental and numerical study on explosion behavior of hydrogen-air mixture in an obstructed closed chamber.
International Journal of Hydrogen Energy.
https://doi.org/https://doi.org/10.1016/j.ijhydene.2023.08.159
Jiang, Y., Qiu, S., Gao, W., Liang, B., & Li, Y. (2024). Hydrogen flame acceleration and explosion overpressure characteristics in a closed obstructed duct.
International Journal of Hydrogen Energy,
59, 1-9.
https://doi.org/https://doi.org/10.1016/j.ijhydene.2024.01.291
Kindracki, J., Kobiera, A., Rarata, G., & Wolanski, P. (2007). Influence of ignition position and obstacles on explosion development in methane–air mixture in closed vessels.
Journal of Loss Prevention in the Process Industries,
20(4), 551-561.
https://doi.org/https://doi.org/10.1016/j.jlp.2007.05.010
Korytchenko, K., Senderowski, C., Samoilenko, D., Poklonskiy, E., Varshamova, I., & Maksymov, A. (2022). Numerical analysis of the spark channel expansion in a high-pressure hydrogen-oxygen mixture and in nitrogen.
Shock Waves,
32(4), 321-335.
https://doi.org/10.1007/s00193-022-01077-3
Li, Du, Y., Wang, S., Qi, S., Zhang, P., & Chen, W. (2017). Large eddy simulation and experimental study on vented gasoline-air mixture explosions in a semi-confined obstructed pipe. Journal of Hazardous Materials, 339, 131-142. https://doi.org/https://doi.org/10.1016/j.jhazmat.2017.06.018
Li, Wu, J., Wang, S., Bai, J., Wu, D., & Qi, S. (2021a). Effects of gas concentration and obstacle location on overpressure and flame propagation characteristics of hydrocarbon fuel-air explosion in a semi-confined pipe.
Fuel,
285, 119268.
https://doi.org/https://doi.org/10.1016/j.fuel.2020.119268
Li, R., Luo, Z., Cheng, F., Wang, T., Lin, H., & Liu, H. (2021b). A comparative investigation of premixed flame propagating of combustible gases-methane mixtures across an obstructed closed tube.
Fuel,
289, 119766.
https://doi.org/https://doi.org/10.1016/j.fuel.2020.119766
Luo, G., Tu, J. Q., Qian, Y. L., Jin, K. K., Ye, T. J., Bai, Y., & Gao, S. (2022). Impacts of rectangular obstacle lengths on premixed methane–air flame propagation in a closed tube.
Combustion, Explosion, and Shock Waves,
58(1), 10-21.
https://doi.org/10.1134/S0010508222010026
Momferatos, G., Giannissi, S. G., Tolias, I. C., Venetsanos, A. G., Vlyssides, A., & Markatos, N. (2022). Vapor cloud explosions in various types of confined environments: CFD analysis and model validation.
Journal of Loss Prevention in the Process Industries,
75, 104681.
https://doi.org/https://doi.org/10.1016/j.jlp.2021.104681
Na'inna, A. M., Somuano, G. B., Phylaktou, H. N., & Andrews, G. E. (2015). Flame acceleration in tube explosions with up to three flat-bar obstacles with variable obstacle separation distance.
Journal of Loss Prevention in the Process Industries,
38, 119-124.
https://doi.org/https://doi.org/10.1016/j.jlp.2015.08.009
Pan, C., Wang, X., Sun, H., Zhu, X., Zhao, J., Fan, H., & Liu, Y. (2022). Large-eddy simulation and experimental study on effects of single-dual sparks positions on vented explosions in a channel.
Fuel,
322, 124282.
https://doi.org/https://doi.org/10.1016/j.fuel.2022.124282
Qin, J., Tan, Y., Wang, Z., & Pan, P. (2012). Experimental study of the effect of the shape of obstacles in pipelines on gas explosions.
Coal science and Technology,
40(2), 3.
https://doi.org/10.1016/j.jlp.2022.104824.
Saeid, Hosein, M., Khadem, J., & Emami, S. (2021). Numerical investigation of the mechanism behind the deflagration to detonation transition in homogeneous and inhomogeneous mixtures of H2-air in an obstructed channel.
International Journal of Hydrogen Energy,
46(41), 21657-21671.
https://doi.org/https://doi.org/10.1016/j.ijhydene.2021.04.006
Sheng, Z., Yang, G., Gao, W., Li, S., Shen, Q., & Sun, H. (2023). Study on the dynamic process of premixed hydrogen-air deflagration flame propagating in a closed space with obstacles.
Fuel,
334, 126542.
https://doi.org/https://doi.org/10.1016/j.fuel.2022.126542
Signetti, S., Klomfass, A., Riedel, W., Putzar, R., & Heine, A. (2023). Simulation of blast propagation and structural effects of accidental hydrogen-air-mixture explosion in a two-stage light-gas gun laboratory for hypervelocity impact experiments.
Journal of Loss Prevention in the Process Industries,
85, 105138.
https://doi.org/https://doi.org/10.1016/j.jlp.2023.105138
Tartandyo, R. A., Ginting, B. M., & Zulfan, J. (2023). Scale effects investigation in physical modeling of recirculating shallow flow using large eddy simulation technique.
Journal Of Applied Fluid Mechanics,
17(1), 43-59.
https://doi.org/10.47176/jafm.17.1.1980
Ustolin, F., Tolias, I. C., Giannissi, S. G., Venetsanos, A. G., & Paltrinieri, N. (2022). A CFD analysis of liquefied gas vessel explosions.
Process Safety and Environmental Protection,
159, 61-75.
https://doi.org/https://doi.org/10.1016/j.psep.2021.12.048
Wang, Yang, P., Yi, W., Luo, Z., Cheng, F., Ding, X., Kang, X., Feng, Z., & Deng, J. (2022a). Effect of obstacle shape on the deflagration characteristics of premixed LPG-air mixtures in a closed tube.
Process Safety and Environmental Protection,
168, 248-256.
https://doi.org/https://doi.org/10.1016/j.psep.2022.09.079
Wang, Yi, W., Liang, H., Yang, P., Luo, Z., Sun, L., Cheng, F., Kang, X., Feng, Z., & Deng, J. (2023a). Experimental research on the pressure and flame propagation behaviors of LPG-air mixtures in a double obstructed tube.
Journal of Loss Prevention in the Process Industries,
82, 104979.
https://doi.org/https://doi.org/10.1016/j.jlp.2023.104979
Wang, Q., Luo, X., Li, Q., Rui, S., Wang, C., & Zhang, A. (2022b). Explosion venting of hydrogen-air mixture in an obstructed rectangular tube.
Fuel,
310, 122473.
https://doi.org/https://doi.org/10.1016/j.fuel.2021.122473
Wang, Z., Yin, Y., Li, S., Xu, Y., Li, L., & Li, G. (2023b) Analysis of near-wall coherent structure of spiral flow in circular pipe based on large eddy simulation.
Journal Of Applied Fluid Mechanics,
17(1), 105-115.
https://doi.org/10.47176/jafm.17.1.2038
Lv, X., Zheng, L., Zhang, Y.,Yu, M., & Su, Y. (2016). Combined effects of obstacle position and equivalence ratio on overpressure of premixed hydrogen-air explosion. International Journal of Hydrogen Energy, 41(39), 17740-17749.
https://doi.org/10.1016/j.ijhydene.2016.07.263.
Xiu, Z., Liu, Z., Li, P., Li, M., Zhao, Y., Fan, T., & Yuan, J. (2023a). Effects of combined obstacles on deflagration characteristics of hydrogen-air premixed gas.
International Journal of Hydrogen Energy,
48(79), 31008-31021.
https://doi.org/https://doi.org/10.1016/j.ijhydene.2023.04.251
Xiu, Z., Liu, Z., Li, P., Li, M., Zhao, Y., Fan, T., & Yuan, J. (2023b). Progress of research on the effect of non-uniform premixing on hydrogen and methane explosion characteristics.
Process Safety and Environmental Protection,
180, 856-867.
https://doi.org/https://doi.org/10.1016/j.psep.2023.10.056
Xu, C., Cong, L., Yu, Z., Song, Z., & Bi, M. (2015). Numerical simulation of premixed methane-air deflagration in a semi-confined obstructed chamber.
Journal of Loss Prevention in the Process Industries,
34(Null).
https://doi.org/10.1016/j.jlp.2015.02.007.
Yang, K., Miao, H., Ji, H., Chen, S., Xing, Z., Jiang, J., Zheng, K., & Liu, G. (2024) Experimental study on the coupling effect of heptafluoropropane and different arrangement of obstacles on methane-air explosion.
Fuel,
358, 130204.
https://doi.org/https://doi.org/10.1016/j.fuel.2023.130204
Zhang, C., Dong, H., Shang, S., Zhang, K., Zhang, Z., & Gao, W. (2023). Investigation of the length-to-diameter ratio of ducts effect on the oscillation propagation behavior and vented characteristics for propane-air vented explosions.
Journal of Loss Prevention in the Process Industries,
86, 105186.
https://doi.org/https://doi.org/10.1016/j.jlp.2023.105186
Zhang, K., Du, S., Chen, H., Wang, J., Zhang, J., Guo, Y., & Guo, J. (2022). Effect of hydrogen concentration on the vented explosion of hydrogen–air mixtures in a 5-m-long duct.
Process Safety and Environmental Protection,
162, 978-986.
https://doi.org/https://doi.org/10.1016/j.psep.2022.05.003
Zhang, Z., Wang, H., Wang, Z., Tian, W., & Wang, Z. (2021). The effect of orifice plates with different shapes on explosion propagation of premixed methane–air in a semi-confined pipeline.
Journal of Loss Prevention in the Process Industries,
71, 104498.
https://doi.org/https://doi.org/10.1016/j.jlp.2021.104498
Zhao, X., Wang, J., Gao, L., Wang, X., & Zhu, Y. (2022). Flame acceleration and onset of detonation in inhomogeneous mixture of hydrogen-air in an obstructed channel.
Aerospace Science and Technology,
130, 107944.
https://doi.org/https://doi.org/10.1016/j.ast.2022.107944
Zheng, K., Jia, Q., Ma, Z., Xing, Z., Hao, Y., & Yu, M. (2023). Experimental and numerical investigation on the premixed methane/air flame propagation in duct with obstacle gradients.
Process Safety and Environmental Protection,
178, 893-904.
https://doi.org/https://doi.org/10.1016/j.psep.2023.08.077