Ackerman, J. W. (1970). Pseudoboiling heat transfer to supercritical pressure water in smooth and ribbed tubes.
Journal of Heat Transfer, 92(3), 490-497.
https://doi.org/10.1115/1.3449698
Dai, X., Shi, L., & Qian, W. (2019). Thermal stability of hexamethyldisiloxane (MM) as a working fluid for organic Rankine cycle.
International Journal of Energy Research, 43(2), 896–904.
https://doi.org/10.1002/er.4323
He, S., Jiang, P. X., Xu, Y. J., Shi, R. F., Kim, W. D., & Jackson, J. D. (2005). A computational study of convection heat transfer to CO2 at supercritical pressures in a vertical mini tube.
International Journal of Thermal Sciences, 44(6), 521-530.
https://doi.org/10.1016/j.ijthermalsci.2004.11.003
Holman, J. P. (2010).
Heat Transfer. McGraw-Hill Series in Mechanical Engineering. The McGraw-Hill Companies.
www.mhhe.com
Hou, J., Zhou, Y., Yuan, Y., & Huang, S. (2024). Numerical study on flow structure and heat transfer of supercritical CO2 in tubes with different inclination angles.
Progress in Nuclear Energy, 168, 105028.
https://doi.org/10.1016/j.pnucene.2023.105028
Huang, D., Wu, Z., Sunden, B., & Li, W. (2016). A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress.
Applied Energy, 162, 494-505.
https://doi.org/10.1016/j.apenergy.2015.10.080
Kim, D. E., & Kim, M. H. (2010). Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube.
Nuclear Engineering and Design, 240(10), 3336-3349.
https://doi.org/10.1016/j.nucengdes.2010.07.002
Kim, D. E., & Kim, M. H. (2011). Experimental investigation of heat transfer in vertical upward and downward supercritical co2 flow in a circular tube.
International Journal of Heat and Fluid Flow, 32(1), 176-191.
https://doi.org/10.1016/j.ijheatfluidflow.2010.09.001
Lecompte, S., Huisseune, H., Martijn, V. D. B., Vanslambrouck, B., & De Paepe, M. (2015). Review of organic rankine cycle (orc) architectures for waste heat recovery.
Renewable & Sustainable Energy Reviews, 47(jul), 448-461.
https://doi.org/10.1016/j.rser.2015.03.089
Lei, X., Li, H., & Zhang, W. (2016). Numerical analysis on heat transfer deterioration of supercritical fluid in the vertical upward tubes.
Journal of Nuclear Engineering and Radiation Science, 2(3), 031017.
https://doi.org/10.1115/1.4032872
Li, N., Pu, H., Zhou, L., Qu, H., Zhang, Y., & Dong, M. (2024). Numerical analysis of mixed convection phenomena in heat transfer to supercritical pressure carbon dioxide inside a horizontal miniature tube.
Applied Thermal Engineering, 237, 121753.
https://doi.org/10.1016/j.applthermaleng.2023.121753
Liu, M., Zhang, Z., Yang, X., Tu, J., & Jiang, S. (2023). Numerical study on heat transfer characteristics of supercritical water in straight and helical tubes.
Applied Thermal Engineering, 226, 120276.
https://doi.org/10.1016/j.applthermaleng.2023.120276
Liu, S., Huang, Y., Liu, G., Wang, J., & Leung, L. K. H. (2017). Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes.
International Journal of Heat and Mass Transfer, 106, 1144-1156.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.093
Loni, R., Najafi, G., Bellos, E., Rajaee, F., & Mazlan, M. (2020). A review of industrial waste heat recovery system for power generation with organic rankine cycle: recent challenges and future outlook.
Journal of Cleaner Production, 287, 125070.
https://doi.org/10.1016/j.jclepro.2020.125070
Mao, S., Zhou, T., Wei, D., Liu, W., & Zhang, Y. (2021). Heat transfer characteristics of supercritical water in channels A systematic literature review of 20 years of research.
Applied Thermal Engineering, 197, 117403.
https://doi.org/10.1016/j.applthermaleng.2021.117403
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications.
AIAA Journal, 32, 1598-1605.
https://doi.org/10.2514/3.12149
Mikielewicz, D. P., Shehata, A. M., Jackson, J. D., & Mceligot, D. M. (2002). Temperature, velocity and mean turbulence structure in strongly heated internal gas flows: comparison of numerical predictions with data.
International Journal of Heat and Mass Transfer, 45(21), 4333-4352.
https://doi.org/10.1016/S0017-9310(02)00119-9
Mohseni, M., & Bazargan, M. (2012). A new analysis of heat transfer deterioration on basis of turbulent viscosity variations of supercritical fluids.
Journal of Heat Transfer, 134(12), 1-7.
https://doi.org/10.1115/1.4007313
Tu, Y., & Zeng, Y. (2021). Heat transfer and hydraulic characteristics of supercritical CO2 in cooled and heated horizontal semicircular channels.
Journal of Applied Fluid Mechanics, 14(5), 1351–1362.
https://doi.org/10.47176/jafm.14.05.32163
Xu, J., Zhang, H., Zhu, B., & Xie, J. (2020a). Critical supercritical-boiling-number to determine the onset of heat transfer deterioration for supercritical fluids.
Solar Energy, 195, 27-36.
https://doi.org/10.1016/j.solener.2019.11.036
Xu, G., Fu, J., Quan, Y., Wen, J., & Dong, B. (2020b). Experimental investigation on heat transfer characteristics of hexamethyldisiloxane (mm) at supercritical pressures for medium/high temperature orc applications.
International Journal of Heat and Mass Transfer, 156, 119852.
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119852
Xu, G., Ju, Y., Gao, W., Fu, J., & Dong, B. (2022). Experimental and numerical investigation of the effects of buoyancy and flow acceleration on the heat transfer of hexamethyldisiloxane (mm) at supercritical pressures.
International Journal of Heat and Mass Transfer, 187, 122581.
https://doi.org/10.1016/j.ijheatmasstransfer.2022.122581
Yağli, H., Koç, Y., Koç, A., Gorgülü, A., & Tandiroğlu, A. (2016). Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic rankine cycle (orc) for biogas fuelled combined heat and power (chp) engine exhaust gas waste heat.
Energy, 111, 923-932.
https://doi.org/10.1016/j.energy.2016.05.119
Yang, Z., Bi, Q., Liu, Z., Guo, Y., & Yan, J. (2015). Heat transfer to supercritical pressure hydrocarbons flowing in a horizontal short tube.
Experimental Thermal and Fluid Science, 61, 144-152.
https://doi.org/10.1016/j.expthermflusci.2014.10.024
Zhu, J., Zhao, C., Cheng, Z., Lin, D., Tao, Z., & Qiu, L. (2019). Experimental investigation on heat transfer of n-decane in a vertical square tube under supercritical pressure.
International Journal of Heat & Mass Transfer,
138(AUG.), 631-639.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.076