Adami, A., Mortazavi, M., & Nosratollahi, M. (2015). Multidisciplinary design optimization of hydrogen peroxide monopropellant propulsion system using GA and SQP.
International Journal of Computer Applications,
113(9), 14–21.
http://doi.org/10.5120/19853-1774
Alazmi, B., & Vafai, K. (2000). Analysis of variants within the porous media transport models.
Journal of Heat Transfer,
122(2), 303-326.
https://doi.org/10.1115/1.521468
Amiri, A., & Vafai, K. (1994). Analysis of dispersion effects and non-thermal equilibrium, non-darcian, variable porosity incompressible flow through porous media.
International Journal of Heat and Mass Transfer,
37, 939-54.
https://doi.org/10.1016/0017-9310%2894%2990219-4
Amiri, A., Vafai, K., & Kuzay, T. M. (1995). Effects of boundary conditions on non-darcian heat transfer through porous media and experimental comparisons
. Numerical Heat Transfer,
27, 651-64.
https://doi.org/10.1080/10407789508913724
Amri, R., Gibbon, D., & Rezoug, T. (2013). The design, development and test of one newton hydrogen peroxide monopropellant thruster
. Aerospace Science and Technology,
25(1), 266-272.
https://doi.org/10.1016/j.ast.2012.02.002
An, S., & Kwon, S. (2009). Scaling and evaluation of pt/al2o3 catalytic reactor for hydrogen peroxide monopropellant thruster.
Journal of Propulsion and Power,
25(5), 1041-1045.
http://dx.doi.org/10.2514/1.40822
An, S., Jin, J., Lee, J., Jo, S., Park, D., & Kwon, S. (2010). Chugging instability of H
2O
2 monopropellant thrusters with reactor aspect ratio and pressures.
Journal of Propulsion and Power,
27(2), 422–427.
http://dx.doi.org/10.2514/1.48939
Cervone, A., Torre, L., d'Agostino, L., Musker, A. J., Roberts, G. T., Bramanti, C., & Saccoccia, G. (2006, July).
Development of Hydrogen Peroxide Monopropellant Rockets. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences.
https://doi.org/10.2514/6.2006-5239
Chan, Y., Liu, H., Tseng, K., & Kuo, T. (2013). Preliminary development of a hydrogen peroxide thruster.
International Journal of Aerospace and Mechanical Engineering,
7(7), 1546-1553.
https://doi.org/10.5281/zenodo.1087287
Coxhill, I. (2002). An investigation of a low cost Bi-Propellant rocket engine for small satellites. [PhD. thesis, Surrey Space Centre School of Electronics and Physical Sciences, University of Surrey]. United Kingdom.
Dixon, A. G. (1988). Correlations for wall and particle shape effects on fixed bed bulk voidage.
The Canadian Journal of Chemical Engineering,
66, 705–708.
https://doi.org/10.1002/cjce.5450660501
George, P. S. (2003). History of liquid-propellant rocket engines in russia, formerly the soviet union.
Journal of Propultion and Power,
19(6).
https://doi.org/10.2514/2.6943
Gibbon, D., Paul, M., Jolley, P.,
Zakirov, V.,
Haag, G.,
Coxhill, I.,
Sweeting, M., &
Eloirdi, R. (2001). Energetic green propulsion for small spacecraft.
AIAA, 2001-3247.
https://doi.org/10.2514/6.2001-3247
Haq, N. U., Khan, R. A., & Mehmood, R. (2017).
Design, development and testing of 1N Hydrogen Peroxide thruster. 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST) IEEE, 599-607.
https://doi.org/10.1109/IBCAST.2017.7868112
Hwang, C. H., Lee, S., Baek, S, Han, C. Y., Kim, S. K., & Yu, M. J. (2012). Effects of catalyst bed failure on thermochemical phenomena for a hydrazine monopropellant thruster using Ir/Al2O3 catalysts.
Industrial & Engineering Chemistry Research,
51(15), 5382−5393.
https://doi.org/10.1021/ie202347f
Hwang, G. J., Wu, C. C., & Chao, C. H. (1995). Investigation of non-darcian forced convection in an asymmetrically heated sintered porous channel.
J Heat Transfer,
117(3), 725-732.
https://doi.org/10.1115/1.2822636
Jones, W., & Launder, B. (1973). The calculation of low-Reynolds-number phenomena with a two equation model of turbulence.
International Journal of Heat and Mass Transfer,
16(6), 1119-1130.
https://doi.org/10.1016/00179310(73)90125-7
Koopmans, R. J., Shrimpton, J. S., Robert, G. T., & Musker, A. J. (2014). Dependence of pellet shape and size on pressure drop in H
2O
2 thrusters.
Journal of Propulsion and Power,
30(3), 775–789.
http://dx.doi.org/10.2514/1.B35072
Kouichi, K. (2008). Modeling of composite heat transfer in open-cellular porous materials at hight temperatures. In Book: Cellular and Porous Materials:
Thermal Properties Simulation and Prediction, 165-198.
https://doi.org/10.1002/9783527621408.ch6
Krejci, D., Woschnak, A., Scharlemann, C., & Ponweirser, K. (2011). Hydrogen peroxide decomposition for micro propulsion: Simulation and experimental verification.
47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 5855.
https://doi.org/10.2514/6.2011-5855
Kuan, C. K., Chen, G. B., & Chao, Y. C. (2007). Development and ground tests of a 100-millinewton hydrogen peroxide monopropellant microthruster.
Journal of Propulsion and Power,
23(6), 1313-1320.
https://doi.org/10.2514/1.30440
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications.
AIAA Journal,
32(8), 1598–1605.
https://doi.org/10.2514/3.12149
Morlan, P., Wu, P., Nejad, A., Ruttle, D., & Fuller, F, (1999). Catalyst development for hydrogen peroxide rocket engines.
AIAA, 1999-2740.
https://doi.org/10.2514/6.1999-2740
Muhammad, S. S. N., Othman, N., Ahmad, N., Mohd, R. N., Wahid, M. A., & Zarhamdy, M. M. Z. (2021). Porosity effect of the silver catalyst in hydrogen peroxide monopropellant thruster.
Journal of CFD Letters,
13(12), 1-20.
https://doi.org/10.37934/cfdl.13.12.120
Musker, A. J., Rusek, J. J., Kappenstein, G. T., & Roberts, C. (2006, September).
Hydrogen peroxide-from bridesmaid to bride for space propulsion. Proc. of the 3rd International Conference on Green Propellants, Poitiers, France.
http://eprints.soton.ac.uk/id/eprint/43655
Palmer, M. J. (2014). Experimental evaluation of hydrogen peroxide catalysts for monopropellant attitude control thrusters [PhD. thesis, University of Southampton]. Faculty of Engineering and the Environment, United Kingdom.
http://eprints.soton.ac.uk/id/eprint/385352
Pasini, A., Torre, L., Romeo, L., Cervone, A., & d’Agostino, L. (2008). Testing and characterization of a hydrogen peroxide monopropellant thruster.
Journal of Propulsion and Power,
24(3), 507–515.
http://dx.doi.org/10.2514/1.33121
Pędziwiatr, P., Mikołajczyk, F., Zawadzki, D., Mikołajczyk, K., & Bedka, A. (2018). Decomposition of hydrogen peroxide-kinetics and review of chosen catalysts.
Acta Innovations,
26(5), 45-52.
https://doi.org/10.32933/ACTAINNOVATIONS.26.5
Runckel, J. F., Willis, C. M., & Salters, L. B. (1963). Investigation of catalyst beds for 98-percent-concentration hydrogen peroxide. NASA TN D-1808, Washington.
Rusek, J. J. (1996). New decomposition catalysts and characterization techniques for rocket-grade hydrogen peroxide.
Journal of Propulsion and Power,
12(3), 574–580.
https://doi.org/10.2514/3.24071
Ryan, C. N., Fonda, M. E., & Roberts, G. (2020). Experimental validation of a 1 newton hydrogen peroxide thruster.
Journal of Propulsion and Power,
36(2). 1-9.
http://dx.doi.org/10.2514/1.B37418
Soejima, M., Nojim, K., Tomioka, S., & Sakuranaka, N. (2016). Development of the fuel heating device for the component test of aerospace propulsion systems,
Journal of Fluid Science and Technology,
11(1), 1-10.
https://doi.org/10.1299/jfst.2016jf
Srivastava, A. K., & Bhadauria, B. S. (2016). Influence of magnetic field on fingering instability in a porous medium with cross-diffusion effect: a thermal non-equilibrium approach.
Journal of Applied Fluid Mechanics,
9(6), 2845-2853.
http://dx.doi.org/10.29252/jafm.09.06.25977
Ventura, M., & Wernimont, E. (2001, July).
Advancements in high concentration hydrogen peroxide catalyst beds. 37th AIAA/ASME/SAE/ASEE, Joint Propulsion Conference, Salt Lake City, Utah.
https://doi.org/10.2514/6.2001-3250
Vestnes, F. (2016).
A CFD-model of the fluid flow in a hydrogen peroxide monopropellant rocket engine in ANSYS fluent 16.2 [Master's thesis, University of Science and Technology Norwegian].
http://hdl.handle.net/11250/2408892
Villafán, V. H., Stéphane, A., Cyril, C., & Romero, P. H. (2011). Heat transfer simulation in a thermochemical solar reactor based on a volumetric porous receiver.
Applied Thermal Engineering,
31(16), 3377-3386.
https://doi.org/10.1016/j.applthermaleng.2011.06.022
Walter, H. (1956). Hydrogen Peroxide Rockets. In T. Benecke & A. W. Quick (Eds.), History of german guided missile developments, AGARDo graph,Vol. 20, Butter worths, London.
White, F. M. (2006). Fluid Mechanics, McGraw-Hill. 7th edition, New York, USA.
Wilcox, D. C. (1998). Turbulence modeling for CFD. Second Edition, D.C.W. Industries.