Abdelraouf, H., Elmekawy, A. M. N., & Kassab, S. Z. (2020). Simulations of flow separation control numerically using different plasma actuator models.
Alexandria Engineering Journal,
59(5), 3881–3896.
https://doi.org/10.1016/j.aej.2020.06.044
Coutier-Delgosha, O., Fortes-Patella, R., & Reboud, J. L. (2003). Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation.
Journal of Fluids Engineering, Transactions of the ASME,
125(1), 38–45.
https://doi.org/10.1115/1.1524584
Gu, Y., Zhang, J., Yu, S., Mou, C., Li, Z., He, C., Wu, D., Mou, J., & Ren, Y. (2022). Unsteady numerical simulation method of hydrofoil surface cavitation.
International Journal of Mechanical Sciences,
228, 107490.
https://doi.org/10.1016/j.ijmecsci.2022.107490
Guo, G., Wang J., Zhang R., Chen, X., & Yang, J. (2022). Numerical study on plasma control of axial tip clear ance leakage flow in liquid ring pump.
Transactions of the Chinese Society for Agricultural Machinery,
53(9), 160–167.
https://doi.org/10.6041/j.issn.1000-1298.2022.09.016
Kawanami, Y., Kato, H., Yamaguchi, H., Tanimura, M., & Tagaya, Y. (1997). Mechanism and control of cloud cavitation.
Journal of Fluids Engineering,
119(4), 788–794.
https://doi.org/10.1115/1.2819499
Kumagai, I., Takahashi, Y., & Murai, Y. (2015). Power-saving device for air bubble generation using a hydrofoil to reduce ship drag: Theory, experiments, and application to ships.
Ocean Engineering,
95, 183–194.
https://doi.org/10.1016/j.oceaneng.2014.11.019
Li, D., Miao, B., Li, Y., Gong, R., & Wang, H. (2021). Numerical study of the hydrofoil cavitation flow with thermodynamic effects.
Renewable Energy,
169, 894–904.
https://doi.org/10.1016/j.renene.2021.01.073
Li, Y., Wu, Y., Liang, H., Zhu, Y., Zhang, H., & Guo, S. (2022). Exploration and outlook of plasma-actuated gas dynamics.
Advances in Mechanics,
52(1), 1–32.
https://doi.org/10.6052/1000-0992-21-044
Liu, C., Yan, Q., & Wood, H. G. (2019). Numerical investigation of passive cavitation control using a slot on a three-dimensional hydrofoil.
International Journal of Numerical Methods for Heat & Fluid Flow,
30(7), 3585–3605.
https://doi.org/10.1108/HFF-05-2019-0395
Look, A., Riedelbauch, S., Necker, J., & Jung, A. (2019).
Cavitation damage detection through acoustic emissions. IOP Conference Series: Earth and Environmental Science, 405(1), 012004.
https://doi.org/10.1088/1755-1315/405/1/012004
Saurel, R., & Lemetayer, O. (2001). A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation.
Journal of Fluid Mechanics,
431, 239–271.
https://doi.org/10.1017/S0022112000003098
Schnerr, G. H., & Sauer, J. (2001). Physical and numerical modeling of unsteady cavitation dynamics. 4th International Conference on Multiphase Flow, New Orleans, USA.
Shyy, W., Jayaraman, B., & Andersson, A. (2002). Modeling of glow discharge-induced fluid dynamics.
Journal of Applied Physics,
92(11), 6434–6443.
https://doi.org/10.1063/1.1515103
Thomai, M. P., & Chatterjee, D. (2015). Computational analysis of flow over a cascade of S-shaped hydrofoil of fully reversible pump-turbine used in extracting tidal energy.
Renewable Energy,
77, 240–249.
https://doi.org/10.1016/j.renene.2014.12.019
Wang, W., Lu, S., Xu, R., Yi, Q., Wang, Y., & Wang, X. (2017). Numerical study of hydrofoil surface jet flow on cavitation suppression.
Journal of Drainage and Irrigation Machinery Engineering,
35(10), 829–834.
https://doi.org/10. 3969 / j. issn. 1674 - 8530. 16. 1028
Wang, W., Tang, T., Lu, S., Zhang, Q., & Wang, X. (2019). Numerical simulation and analysis of active jet control of hydrofoil cavitation.
Chinese Journal of Theoretical and Applied Mechanics,
51(6), 1752–1760.
https://doi.org/10.6052/0459-1879-19-222
Wang, W., Zhang, Q., Tang, T., An, Z., Tong, T., & Wang, X. (2020). Mechanism investigation of water injection on suppressing hydrofoil cloud cavitation flow.
Chinese Journal of Theoretical and Applied Mechanics,
52(1), 12–23.
https://doi.org/10.6052/0459-1879-19-282
Wang, Y. C., & Brennen, C. E. (1999). Numerical computation of shock waves in a spherical cloud of cavitation bubbles.
Journal of Fluids Engineering,
121(4), 872–880.
https://doi.org/10.1115/1.2823549
Yang, N., Okajima, J., & Iga, Y. (2023). Change in cavitation regime on NACA0015 hydrofoil by heating the hydrofoil surface.
Journal of Fluids Engineering,
145(7), 071201.
https://doi.org/10.1115/1.4057004
Zhang X., & Wang X. (2023). Research progress and outlook of flow field created by dielectric barrier discharge plasma actuators driven by a sinusoidal alternating current high-voltage power.
Chinese Journal of Theoretical and Applied Mechanics, 55(2), 285–298.
https://doi.org/10.6052/0459-1879-22-377
Zhao, W., Liu, Z., Chen, S., Ding, Y., & Li, P. (2023). Research on regulation and optimization of hydrofoil cavitation flow field.
Journal of Xi’an Jiaotong University,
5, 1–12.
https://doi.org/10.7652/xjtuxb202305008