Ahn, B. K., Jeong, S. W., Kim, J. H., Shao, S., Hong, J., & Arndt, R. E. A. (2017). An experimental investigation of artificial supercavitation generated by air injection behind disk-shaped cavitators.
International Journal of Naval Architecture and Ocean Engineering,
9(2), 227–237.
https://doi.org/10.1016/j.ijnaoe.2016.10.006
Ahn, B. K., Lee, C. S., & Kim, H. T. (2010). Experimental and numerical studies on super-cavitating flow of axisymmetric cavitators.
International Journal of Naval Architecture and Ocean Engineering,
2(1), 39–44.
https://doi.org/10.2478/IJNAOE-2013-0018
Cao, L., Karn, A., Arndt, R. E., Wang, Z., & Hong, J. (2017). Numerical investigations of pressure distribution inside a ventilated supercavity.
Journal of Fluids Engineering,
139(2), 021301.
https://doi.org/10.1115/1.4035027
Chen, G., Sun, T., Yang, S., Miao, Z., & Tan, H. (2023). A study on the cavitating flow around an elliptical disk-shaped cavitator for non-body-of-revolution underwater vehicles.
Engineering Applications of Computational Fluid Mechanics,
17(1). Scopus.
https://doi.org/10.1080/19942060.2022.2159882
Choi, J. H., Penmetsa, R. C., & Grandhi, R. V. (2005). Shape optimization of the cavitator for a supercavitating torpedo.
Structural and Multidisciplinary Optimization,
29(2), 159–167.
https://doi.org/10.1007/s00158-004-0466-0
Erfanian, M. R., & Anbarsooz, M. (2018). Numerical investigation of body and hole effects on the cavitating flow behind a disk cavitator at extremely low cavitation numbers.
Applied Mathematical Modelling,
62, 163–180.
https://doi.org/10.1016/j.apm.2018.05.026
Gaurav, K., Mittal, G., & Karn, A. (2022). On the morphology of elongated bubbles during their formation at submerged orifices.
Chemical Engineering Science,
250, 117395.
https://doi.org/10.1016/j.ces.2021.117395
Javadpour, S. M., Farahat, S., Ajam, H., Salari, M., & Hossein Nezhad, A. (2017). Experimental and numerical study of ventilated supercavitation around a cone cavitator.
Heat and Mass Transfer,
53, 1491–1502.
https://doi.org/10.1007/s00231-016-1893-3
Karn, A., Arndt, R. E. A., & Hong, J. (2016a). An experimental investigation into supercavity closure mechanisms.
Journal of Fluid Mechanics,
789, 259–284.
https://doi.org/10.1017/jfm.2015.680
Karn, A., Ellis, C., Hong, J., & Arndt, R. E. A. (2015b). Investigations into the turbulent bubbly wake of a ventilated hydrofoil: Moving toward improved turbine aeration techniques.
Experimental Thermal and Fluid Science,
64, 186–195.
https://doi.org/10.1016/j.expthermflusci.2014.12.011
Kosel, J., Šuštaršič, M., Petkovšek, M., Zupanc, M., Sežun, M., & Dular, M. (2020). Application of (super) cavitation for the recycling of process waters in paper producing industry.
Ultrasonics Sonochemistry,
64, 105002.
https://doi.org/10.1016/j.ultsonch.2020.105002
Likhachev, D. S., Li, F., & Kulagin, V. A. (2014). Experimental study on the performance of a rotational supercavitating evaporator for desalination.
Science China Technological Sciences,
57(11), 2115–2130.
https://doi.org/10.1007/s11431-014-5631-0
Oba, R., Ikohagi, T., & Yasu, S. (1980). Supercavitating cavity observations by means of laser velocimeter.
Journal of Fluids Engineering,
102(4), 433–438.
https://doi.org/10.1115/1.3240716
Rajkumar, R., Gaurav, K., Karn, A., Kumar, V., & Shukla, H. (2023). Numerical investigation of the effect of liquid temperature on supercavitation. In S. Narendranth, P. G. Mukunda & U. K. Saha (Eds.),
Recent Advances in Mechanical Engineering (pp. 19–27). Springer Nature.
https://doi.org/10.1007/978-981-19-1388-4_2
Sarc, A., Kosel, J., Stopar, D., Oder, M., & Dular, M. (2018). Removal of bacteria legionella pneumophila, escherichia coli, and bacillus subtilis by (super) cavitation.
Ultrasonics Sonochemistry,
42, 228–236.
https://doi.org/10.1016/j.ultsonch.2017.11.004
Schmid, A. (2009). A new aeration technology using “Supercavitation.”
Recent Patents on Chemical Engineering,
2(3), 176–180.
https://shorturl.at/NtCXl
Shao, S., Balakrishna, A., Yoon, K., Li, J., Liu, Y., & Hong, J. (2020). Effect of mounting strut and cavitator shape on the ventilation demand for ventilated supercavitation.
Experimental Thermal and Fluid Science,
118. Scopus.
https://doi.org/10.1016/j.expthermflusci.2020.110173
Shao, S., Karn, A., Ahn, B.-K., Arndt, R. E. A., & Hong, J. (2017). A comparative study of natural and ventilated supercavitation across two closed-wall water tunnel facilities.
Experimental Thermal and Fluid Science,
88, 519–529.
https://doi.org/10.1016/j.expthermflusci.2017.07.005
Shi, H. H., Itoh, M., & Takami, T. (2000). Optical observation of the supercavitation induced by high-speed water entry.
Journal of Fluids Engineering,
122(4), 806–810.
https://doi.org/10.1115/1.1310575
Xu, C., & Khoo, B. C. (2020). Dynamics of the supercavitating hydrofoil with cavitator in steady flow field.
Physics of Fluids,
32(12), 123307.
https://doi.org/10.1063/5.0030907
Zhang, X., Wei, Y., Zhang, J., Cong, W., & Yu, K. (2007). Experimental research on the shape characters of natural and ventilated supercavitation.
Journal of Hydrodynamics, Ser. B,
19(5), 564–571.
https://doi.org/10.1016/S1001-6058(07)60154-1