Numerical Assessment of Vortex Generators for Enhancing Thermal Performance in Corrugated Tubes

Document Type : Regular Article

Authors

1 Laboratory of Development in Mechanics and Materials (LDMM), University of Djelfa, 17000, Algeria

2 Energy and Environment Laboratory, Department of Mechanical Engineering, Institute of Technology, University Center Salhi Ahmed Naama (Ctr. Univ. Naama), P.O. Box 66, Naama 45000, Algeria

3 College of Technical Engineering, National University of Science and Technology, Dhi Qar, 64001, Iraq

4 Division of Advanced Nano Material Technologies, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq

5 Faculty of Engineering and Natural Sciences, Biruni University, Topkapi, Istanbul, Turkey

10.47176/jafm.17.10.2460

Abstract

The effectiveness of triangular baffles in enhancing heat transfer within corrugated tubes is examined numerically in this study. Two key parameters influencing performance are examined: baffle placement (staggered and aligned) and their angles of attack (0°, 15°, 30°, and 45°). Heat transfer, friction, as well as performance metrics are comprehensively examined and compared for both configurations. The finite element method (FEM) implemented in CFD software COMSOL Multiphysics 6.1 is employed for simulations across a range of Reynolds numbers (100-400). Results reveal significant heat transfer improvements due to the proposed baffle configurations. Notably, aligned baffles with a 30° angle of attack achieve a 43.6% increase the heat transfer when compared to the baffle-free scenario. Staggered baffles with a 15° angle of attack demonstrate a superior 55.3% improvement compared to the baseline. A comprehensive evaluation of performance criteria identifies staggered baffles with a 30° angle of attack as the optimal configuration for maximizing heat transfer within corrugated tubes. 

Keywords

Main Subjects


Ali, S., Habchi, C., Menanteau, S., Lemenand, T., & Harion, J. L. (2015). Heat transfer and mixing enhancement by free elastic flaps oscillation. International Journal of Heat and Mass Transfer85, 250-264.  https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.122
Aridi, R., Ali, S., Lemenand, T., Faraj, J., & Khaled, M. (2022). CFD analysis on the spatial effect of vortex generators in concentric tube heat exchangers–A comparative study. International Journal of Thermofluids16, 100247. https://doi.org/10.1016/j.ijft.2022.100247
Arjmandi, H., Amiri, P., & Pour, M. S. (2020). Geometric optimization of a double pipe heat exchanger with combined vortex generator and twisted tape: A CFD and response surface methodology (RSM) study. Thermal Science and Engineering Progress18, 100514. https://doi.org/10.1016/j.tsep.2020.100514
Babu, R., Kumar, P., Roy, S., & Ganesan, R. (2022). A comprehensive review on compound heat transfer enhancement using passive techniques in a heat exchanger. Materials Today: Proceedings54, 428-436. https://doi.org/10.1016/j.matpr.2021.09.541
Benhanifia, K., Redouane, F., Lakhdar, R., Brahim, M., Al-Farhany, K., Jamshed, W., Eid, M. R., El Din, S. M., & Raizah, Z. (2022). Investigation of mixing viscoplastic fluid with a modified anchor impeller inside a cylindrical stirred vessel using Casson–Papanastasiou model. Scientific Reports12(1), 17534. https://doi.org/10.1038/s41598-022-22415-6
Bennour, E., Kezrane, C., Kaid, N., Alqahtani, S., Alshehery, S., & Menni, Y. (2023). Improving mixing efficiency in laminar-flow static mixers with baffle inserts and vortex generators: A three-dimensional numerical investigation using corrugated tubes. Chemical Engineering and Processing-Process Intensification193, 109530. https://doi.org/10.1016/j.cep.2023.109530  
Biswas, G., Chattopadhyay, H., & Sinha, A. (2012). Augmentation of heat transfer by creation of streamwise longitudinal vortices using vortex generators. Heat Transfer Engineering33(4-5), 406-424. https://doi.org/10.1080/01457632.2012.614150
Budiman, A. C., Mitsudharmadi, H., Bouremel, Y., Winoto, S. H., & Low, H. T. (2016). Effects of wavy channel entrance design on streamwise counter-rotating vortices: a visualization study. Journal of Applied Fluid Mechanics9(5), 2161-2166. https://doi.org/10.18869/acadpub.jafm.68.236.25657
Cao, Z., Wu, Z., Luan, H., & Sunden, B. (2017). Numerical study on heat transfer enhancement for laminar flow in a tube with mesh conical frustum inserts. Numerical Heat Transfer, Part A: Applications72(1), 21-39. https://doi.org/10.1080/10407782.2017.1353386    
Carpio, J., & Valencia, A. (2021). Heat transfer enhancement through longitudinal vortex generators in compact heat exchangers with flat tubes. International Communications in Heat and Mass Transfer120, 105035. https://doi.org/10.1016/j.icheatmasstransfer.2020.105035
Chtourou, S., Djemel, H., Kaffel, M., & Baccar, M. (2021). Predicting the effect of the rib pitch on thermal performance factor of small channels plate heat exchangers fitted with Y and C shapes obstacles. SN Applied Sciences3, 1-28. https://doi.org/10.1007/s42452-021-04473-z
Dahmani, A., Muñoz-Cámara, J., Laouedj, S., & Solano, J. P. (2022). Heat transfer enhancement of ferrofluid flow in a solar absorber tube under non-uniform magnetic field created by a periodic current-carrying wire. Sustainable Energy Technologies and Assessments52, 101996. https://doi.org/10.1016/j.seta.2022.101996
Dal Jeong, Y., Ahn, K. H., Kim, M. J., & Lee, J. H. (2022). Heat transfer enhancement in a channel flow using two wall-mounted flexible flags with a confined cylinder. International Journal of Heat and Mass Transfer195, 123185. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123185
Deshmukh, P. W., Prabhu, S. V., & Vedula, R. P. (2016). Heat transfer enhancement for laminar flow in tubes using curved delta wing vortex generator inserts. Applied Thermal Engineering106, 1415-1426. https://doi.org/10.1016/j.applthermaleng.2016.06.120
Deshmukh, P. W., Prabhu, S. V., & Vedula, R. P. (2022). Heat transfer augmentation for turbulent flow in circular tubes using inserts with multiple curved vortex generator elements. International Journal of Thermal Sciences171, 107203. https://doi.org/10.1016/j.ijthermalsci.2021.107203
Dormohammadi, R., Farzaneh-Gord, M., Ebrahimi-Moghadam, A., & Ahmadi, M. H. (2018). Heat transfer and entropy generation of the nanofluid flow inside sinusoidal wavy channels. Journal of Molecular Liquids269, 229-240. https://doi.org/10.1016/j.molliq.2018.07.119
Eiamsa-Ard, S. (2010). Study on thermal and fluid flow characteristics in turbulent channel flows with multiple twisted tape vortex generators. International Communications in Heat and Mass Transfer37(6), 644-651. https://doi.org/10.1016/j.icheatmasstransfer.2010.02.004
Ferrer, V., Mil-Martίnez, R., Ortega, J., & Vargas, R. O. (2017). Influence of smooth constriction on microstructure evolution during fluid flow through a tube. Journal of Applied Fluid Mechanics10(6), 1583-1591. https://doi.org/10.29252/jafm.73.245.27846
Ghachem, K., Aich, W., & Kolsi, L. (2021). Computational analysis of hybrid nanofluid enhanced heat transfer in cross flow micro heat exchanger with rectangular wavy channels. Case Studies in Thermal Engineering, 24, 100822. https://doi.org/10.1016/j.csite.2020.100822
Ghasemi, S. E. (2023). Hydrothermal analysis of turbulent fluid flow inside a novel enhanced circular tube for solar collector applications. Waves in Random and Complex Media33(1), 225-236. https://doi.org/10.1080/17455030.2022.2138629
Ghasemi, S. E., & Ranjbar, A. A. (2016a). Thermal efficiency evaluation of solar rings in tubes. The European Physical Journal Plus131(12), 430. https://doi.org/10.1140/epjp/i2016-16430-x
Ghasemi, S. E., & Ranjbar, A. A. (2016b). Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: A CFD modelling study. Journal of Molecular Liquids222, 159-166. https://doi.org/10.1016/j.molliq.2016.06.091
Ghasemi, S. E., & Ranjbar, A. A. (2017). Numerical thermal study on effect of porous rings on performance of solar parabolic trough collector. Applied Thermal Engineering118, 807-816. https://doi.org/10.1016/j.applthermaleng.2017.03.021
Ghasemi, S. E., & Ranjbar, A. A. (2024). A novel numerical study on the melting process of phase change materials in a heat exchanger for energy storage. Numerical Heat Transfer, Part A: Applications85(2), 237-249. https://doi.org/10.1080/10407782.2023.2181893
Ghasemi, S. E., Ranjbar, A. A., & Hosseini, M. J. (2017). Forced convective heat transfer of nanofluid as a coolant flowing through a heat sink: Experimental and numerical study. Journal of Molecular Liquids248, 264-270. https://doi.org/10.1016/j.molliq.2017.10.062
Haque, M. R., & Rahman, A. (2020). Numerical investigation of convective heat transfer characteristics of circular and oval tube banks with vortex generators. Journal of Mechanical Science and Technology34, 457-467.  https://doi.org/10.1007/s12206-019-1044-0
Jayadevan, P. C., Siddharth, R., & Kamath, P. M. (2019). Modeling Frictional Characteristics of Water Flowing Through Microchannel. Journal of Applied Fluid Mechanics12(1), 243-255. https://doi.org/10.29252/JAFM.75.253.28913
Kolsi, L., Hussein, A. K., Borjini, M. N., Mohammed, H. A., & Aïssia, H. B. (2014). Computational analysis of three-dimensional unsteady natural convection and entropy generation in a cubical enclosure filled with water-Al2O3 nanofluid. Arabian Journal for Science and Engineering, 39, 7483-7493. https://doi.org/10.1007/s13369-014-1341-y
Kumar, S., & Prasad, L. (2023). Performance intensification analysis of laminar flow through heat exchanger tube with drumet-cut twisted tape inserts. Multiscale and Multidisciplinary Modeling, Experiments and Design, 1-13. https://doi.org/10.1007/s41939-023-00286-2   
Lei, Y., Zheng, F., Song, C., & Lyu, Y. (2017). Improving the thermal hydraulic performance of a circular tube by using punched delta-winglet vortex generators. International Journal of Heat and Mass Transfer111, 299-311. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.101
Liu, P., Zheng, N., Shan, F., Liu, Z., & Liu, W. (2018). An experimental and numerical study on the laminar heat transfer and flow characteristics of a circular tube fitted with multiple conical strips inserts. International Journal of Heat and Mass Transfer117, 691-709. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.035
Maouedj, R., Menni, Y., Inc, M., Chu, Y. M., Ameur, H., & Lorenzini, G. (2021). Simulating the turbulent hydrothermal behavior of Oil/MWCNT nanofluid in a solar channel heat exchanger equipped with vortex generators. CMES-Computer Modeling in Engineering & Sciences, 126(3), 855-889. https://doi.org/10.32604/cmes.2021.014524
Maradiya, C., Vadher, J., & Agarwal, R. (2018). The heat transfer enhancement techniques and their thermal performance factor. Beni-Suef University Journal of Basic and Applied Sciences7(1), 1-21. https://doi.org/10.1016/j.bjbas.2017.10.001
Mashayekhi, R., Khodabandeh, E., Bahiraei, M., Bahrami, L., Toghraie, D., & Akbari, O. A. (2017). Application of a novel conical strip insert to improve the efficacy of water–Ag nanofluid for utilization in thermal systems: a two-phase simulation. Energy Conversion and Management151, 573-586. https://doi.org/10.1016/j.enconman.2017.09.025
Mehta, S. K., Pati, S., & Baranyi, L. (2022). Effect of amplitude of walls on thermal and hydrodynamic characteristics of laminar flow through an asymmetric wavy channel. Case Studies in Thermal Engineering31,101796. https://doi.org/10.1016/j.csite.2022.101796
Menni, Y., & Azzi, A. (2018). Numerical analysis of thermal and aerodynamic fields in a channel with cascaded baffles. Periodica Polytechnica Mechanical Engineering, 62(1), 16-25. https://doi.org/10.3311/PPme.10613  
Menni, Y., Ameur, H., Chamkha, A. J., Inc, M., & Almohsen, B. (2020a). Heat and mass transfer of oils in baffled and finned ducts. Thermal Science24(Suppl. 1), 267-276. https://doi.org/10.2298/TSCI20S1267M
Menni, Y., Chamkha, A. J., Azzi, A., & Zidani, C. (2020b). Numerical analysis of fluid flow and heat transfer characteristics of a new kind of vortex generators by comparison with those of traditional vortex generators. International Journal of Fluid Mechanics Research, 47(1), 23-42. https://doi.org/10.1615/InterJFluidMechRes.2019026753 
Menni, Y., Chamkha, A. J., Azzi, A., Zidani, C., & Benyoucef, B. (2019a). Study of air flow around flat and arc-shaped baffles in shell-and-tube heat exchangers. Mathematical Modelling of Engineering Problems, 6(1), 77-84. https://doi.org/10.18280/mmep.060110   
Menni, Y., Chamkha, A. J., Lorenzini, G., & Benyoucef, B. (2019b). Computational fluid dynamics based numerical simulation of thermal and thermo-hydraulic performance of a solar air heater channel having various ribs on absorber plates. Mathematical Modelling of Engineering Problems, 6(2), 170-174. https://doi.org/10.18280/mmep.060203  
Menni, Y., Chamkha, A. J., Zidani, C., & Benyoucef, B. (2019c). Heat transfer in air flow past a bottom channel wall-attached diamond-shaped baffle–using a CFD technique. Periodica Polytechnica Mechanical Engineering, 63(2), 100-112. https://doi.org/10.3311/PPme.12490 
Menni, Y., Chamkha, A. J., Zidani, C., & Benyoucef, B. (2019d). Heat and nanofluid transfer in baffled channels of different outlet models. Mathematical Modelling of Engineering Problems, 6(1), 21-28. https://doi.org/10.18280/mmep.060103        
Moghaddam, M. A. E., & Ganji, D. D. (2021). A comprehensive evaluation of the vertical triplex-tube heat exchanger with PCM, concentrating on flow direction, nanoparticles and multiple PCM implementation. Thermal Science and Engineering Progress26, 101124. https://doi.org/10.1016/j.tsep.2021.101124
Mohammed, A. M., Kapan, S., Sen, M., & Celi̇k, N. (2021). Effect of vibration on heat transfer and pressure drop in a heat exchanger with turbulator. Case Studies in Thermal Engineering28, 101680. https://doi.org/10.1016/j.csite.2021.101680
Rahimi, A., Kasaeipoor, A., Malekshah, E. H., & Kolsi, L. (2017). Experimental and numerical study on heat transfer performance of three-dimensional natural convection in an enclosure filled with DWCNTs-water nanofluid. Powder Technology, 322, 340-352. https://doi.org/10.1016/j.powtec.2017.09.008
Rajan, A., & Prasad, L. (2021). Performance investigation of laminar flow through tube fitted with hyperbolic-cut twisted tape inserts. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-21. https://doi.org/10.1080/15567036.2021.2007311
Rebhi, R., Menni, Y., Lorenzini, G., & Ahmad, H. (2022). Forced-convection heat transfer in solar collectors and heat exchangers: a review. Journal of Advanced Research in Applied Sciences and Engineering Technology, 26(3), 1-15. https://doi.org/10.37934/araset.26.3.115 
Saini, P., Dhar, A., & Powar, S. (2023). Performance enhancement of fin and tube heat exchanger employing curved trapezoidal winglet vortex generator with circular punched holes. International Journal of Heat and Mass Transfer209, 124142. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124142
Sakhri, N., Menni, Y., Chamkha, A. J., Lorenzini, G., Ameur, H., Kaid, N., & Bensafi, M. (2021a). Experimental study of an earth-to-air heat exchanger coupled to the solar chimney for heating and cooling applications in arid regions. Journal of Thermal Analysis and Calorimetry, 145, 3349-3358. https://doi.org/10.1007/s10973-020-09867-6 
Sakhri, N., Moussaoui, A., Menni, Y., Sadeghzadeh, M., & Ahmadi, M. H. (2021b). New passive thermal comfort system using three renewable energies: Wind catcher, solar chimney and earth to air heat exchanger integrated to real‐scale test room in arid region (Experimental study). International Journal of Energy Research, 45(2), 2177-2194. https://doi.org/10.1002/er.5911
Saysroy, A., & Eiamsa-Ard, S. (2017). Enhancing convective heat transfer in laminar and turbulent flow regions using multi-channel twisted tape inserts. International Journal of Thermal Sciences121, 55-74. https://doi.org/10.1016/j.ijthermalsci.2017.07.002
Sheikholeslami, M., Gorji-Bandpy, M., & Ganji, D. D. (2015). Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices. Renewable and Sustainable Energy Reviews49, 444-469. https://doi.org/10.1016/j.rser.2015.04.113
Silva, F. A., Júnior, L., Silva, J., Kambampati, S., & Salviano, L. (2021). Parametric optimization of a stamped longitudinal vortex generator inside a circular tube of a solar water heater at low Reynolds numbers. SN Applied Sciences3, 1-13. https://doi.org/10.1007/s42452-021-04723-0
Soltani-Tehrani, A., Tavakoli, M. R., & Salimpour, M. R. (2018). Using porous media to improve the performance of a wavy-tube heat exchanger. FME Transactions46(4), 631-635. https://doi.org/10.5937/fmet1804631S
Tian, M. W., Khorasani, S., Moria, H., Pourhedayat, S., & Dizaji, H. S. (2020). Profit and efficiency boost of triangular vortex-generators by novel techniques. International Journal of Heat and Mass Transfer156, 119842. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119842
Valiallah Mousavi, S., Barzegar Gerdroodbary, M., Sheikholeslami, M., & Ganji, D. D. (2016). The influence of a magnetic field on the heat transfer of a magnetic nanofluid in a sinusoidal channel. The European Physical Journal Plus131, 1-12. https://doi.org/10.1140/epjp/i2016-16347-4
Wang, C. C., & Chen, C. K. (2002). Forced convection in a wavy-wall channel. International Journal of Heat and Mass Transfer45(12), 2587-2595. https://doi.org/10.1016/S0017-9310 (01)00335-0
Wang, J., Fu, T., Zeng, L., Lien, F. S., & Deng, X. (2022). Experimental investigation and numerical investigations of heat transfer enhancement in a tube with punched winglets. International Journal of Thermal Sciences177, 107542. https://doi.org/10.1016/j.ijthermalsci.2022.107542
Xu, Y., Islam, M. D., & Kharoua, N. (2017). Numerical study of winglets vortex generator effects on thermal performance in a circular pipe. International Journal of Thermal Sciences112, 304-317. https://doi.org/10.1016/j.ijthermalsci.2016.10.015
Yongsiri, K., Eiamsa-Ard, P., Wongcharee, K., & Eiamsa-Ard, S. J. C. S. (2014). Augmented heat transfer in a turbulent channel flow with inclined detached-ribs. Case Studies in Thermal Engineering3, 1-10. https://doi.org/10.1016/j.csite.2013.12.003
Zheng, N., Liu, P., Shan, F., Liu, Z., & Liu, W. (2017). Sensitivity analysis and multi-objective optimization of a heat exchanger tube with conical strip vortex generators. Applied Thermal Engineering122, 642-652.       https://doi.org/10.1016/j.applthermaleng.2017.05.046