Simulation of Very Low Frequency Pulsed Fluidized Bed

Document Type : Regular Article

Authors

1 Chemical Engineering Group, Pardis College, Isfahan University of Technology, Isfahan 8415683111, Iran

2 Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran

Abstract

Achieving high fluidization quality and bed stability is a paramount challenge in pulsed fluidized beds. 2D hydrodynamics models were studied using the Eulerian-Eulerian method with KTGF. This study investigates the impact of rectangular pulsation superimposed on steady airflow, while maintaining a constant temporal average gas velocity, on fluidization quality. Numerical results indicated that superimposing pulsations on steady airflow and increasing the steady airflow velocity to three times the minimum fluidization velocity resulted in a decrease in the bed expansion ratio. This decrease was most notable particularly at a pulsation frequency of 0.05Hz, with a reducing of approximately by about 21%. By decreasing the velocity ratio from 9.52 to 6.52, the pressure drop increased by 27% and 4.5% at 0.05 Hz and 10 Hz, respectively. Additionally, the fluidization index increased by 32% and 2% under these conditions. The optimal range of pulsed airflow velocity fell between 2.76 and 1.17 times the steady airflow velocity and was most effective at 0.05 – 0.1 Hz. 

Keywords

Main Subjects


Bizhaem, H. K., & Tabrizi, H. B. (2013). Experimental study on hydrodynamic characteristics of gas – solid pulsed fl uidized bed. Powder Technology, 237, 14–23. https://doi.org/10.1016/j.powtec.2013.01.001
Bizhaem, H. K., & Tabrizi, H. B. (2017). Investigating effect of pulsed flow on hydrodynamics of gas-solid fluidized bed using two- fluid model simulation and experiment. Powder Technology, 311, 328–340. https://doi.org/10.1016/j.powtec.2017.01.027
Coppens, M. & Ommen, J. R. Van (2003). Structuring chaotic fluidized beds. Chemical Engineering Journal, 96, 117-124. https://doi.org/10.1016/j.cej.2003.08.007
de Oliveira, D. G., Wu, C. L., & Nandakumar, K. (2020). Numerical investigation of pulsed fluidized bed using CFD-DEM: Insights on the dynamics. Powder Technology, 363, 745–756. https://doi.org/10.1016/j.powtec.2020.01.016
Di Nardo, A., Calchetti, G., & Stendardo, S. (2018). Modeling and simulation of an oxygen-blown bubbling fluidized bed gasifier using the computational particle-fluid dynamics (CPFD) approach. Journal of Applied Fluid Mechancis, 11(4), 825–834. https://doi.org/10.29252/jafm.11.04
Ding, J., & Gidaspow, D. (1990). A bubbling fluidization model using kinetic theory of granular flow. AIChE Journal, 36(4), 523–538. https://doi.org/10.1002/aic.690360404
Dong, L., Zhang, B., Zhang, Y., Zhao, Y., Zhou, E., Lv, P., & Duan, C. (2017). Kinetic characteristics of the particles in a dense-phase pulsed fluidized bed for dry beneficiation. Canadian Journal of Chemical Engineering, 95(6), 1133–1140. https://doi.org/10.1002/cjce.22751
Dong, L., Zhang, Y., Zhao, Y., Peng, L., Zhou, E., Cai, L., Zhang, B., & Duan, C. (2016). Effect of active pulsing air flow on gas-vibro fluidized bed for fine coal separation. Advanced Powder Technology, 27(5), 2257–2264. https://doi.org/10.1016/j.apt.2016.08.012
Dong, L., Zhu, F., Li, Y., Zhao, Y., Duan, C., Ren, Y., Wang, G., He, J., & Zhang, Y. (2021). Experimental and numerical study of the characteristics of the forced oscillation in a pulsation fluidized bed (PFB) for coal separation. Chemical Engineering Science, 234, 116459. https://doi.org/10.1016/j.ces.2021.116459
Feng, Z., Liu, D., Zhang, W., Feng, H., & Ommen, J. R. Van. (2022). Elutriation and agglomerate size distribution in a silica nanoparticle vibro-fluidized bed. Chemical Engineering Journal, 434(December 2021), 134654. https://doi.org/10.1016/j.cej.2022.134654
Gao, X., Yu, J., Li, C., Panday, R., Xu, Y., Li, T., Ashfaq, H., Hughes, B., Rogers, W. A., Virginia, W., & Virginia, W. (2020). Comprehensive experimental investigation on biomass-glass beads binary fluidization: A data set for CFD model validation. AIChE Journal, 66(2) 1–18. https://doi.org/10.1002/aic.16843
Ghadirian, E., & Arastoopour, H. (2016). CFD simulation of a fluidized bed using the EMMS approach for the gas-solid drag force. Powder Technology, 288, 35–44. https://doi.org/10.1016/j.powtec.2015.10.034
Gidaspow, D., Bezburuah, R., & Ding, J. (1992). Hydrodynamics of circulating fluidized beds: Kinetic theory approach. 7th Fluidization Conference, 75–82. http://www.osti.gov/scitech/servlets/purl/5896246
Huang, D. S., & Levy, E. K. (2004). Heat transfer to fine powders in a bubbling fluidized bed with sound assistance. AIChE Journal, 50(2), 302–310. https://doi.org/10.1002/aic.10028
Ireland, E., Pitt, K., & Smith, R. (2016). A review of pulsed flow fluidisation; the effects of intermittent gas flow on fluidised gas-solid bed behaviour. Powder Technology, 292,108 -121. https://doi.org/10.1016/j.powtec.2016.01.018
Jia, D., Bi, X., Lim, C. J., Sokhansanj, S., & Tsutsumi, A. (2019). Heat transfer in a tapered fluidized bed of biomass particles with pulsed gas flow. Particuology, 42, 2–14. https://doi.org/10.1016/j.partic.2018.01.007
Jia, D., Cathary, O., Peng, J., Bi, X., Lim, C. J., Sokhansanj, S., Liu, Y., Wang, R., & Tsutsumi, A. (2015). Fluidization and drying of biomass particles in a vibrating fl uidized bed with pulsed gas flow. Fuel Processing Technology, 138, 471- 482. https://doi.org/10.1016/j.fuproc.2015.06.023
Köksal, M., & Vural, H. (1998). Bubble size control in a two-dimensional fluidized bed using a moving double plate distributor. Powder Technology, 95(3), 205–213. https://doi.org/10.1016/S0032-5910(97)03337-8
Kunii, D., & Levenspiel, O. (1991). Fluidization engineering. Butterworths, London.
Laverman, J. A., Roghair, I., Van Sint Annaland, M., & Kuipers, H. (2008). Investigation into the hydrodynamics of gas-solid fluidized beds using particle image velocimetry coupled with digital image analysis. Canadian Journal of Chemical Engineering, 86(3), 523–535. https://doi.org/10.1002/cjce.20054
Li, Y., Zhu, F., Zhang, Y., Zhao, Y., Zhang, G., Huang, Q., & Dong, L. (2020a). Characterization of bubble behaviors in a dense phase pulsed gas–solid fluidized bed for dry coal processing. Particuology, 1–9. https://doi.org/10.1016/j.partic.2020.01.002
Li, H. W., Wang, L., Wang, T., & Du, C. he. (2020b). Experimental and CFD-DEM numerical evaluation of flow and heat transfer characteristics in mixed pulsed fluidized beds. Advanced Powder Technology, 31(8), 3144–3157. https://doi.org/10.1016/j.apt.2020.06.004
Li, Y., Zhou, C., Lv, G., Ren, Y., & Zhao, Y. (2021). Prediction of minimum fluidization velocity in pulsed gas – solid fluidized bed. Chemical Engineering Journal, 417(August 2020), 127965. https://doi.org/10.1016/j.cej.2020.127965
Li, Z., Su, W., Wu, Z., Wang, R., & Mujumdar, A. S. (2010). Investigation of flow behaviors and bubble characteristics of a pulse fluidized bed via CFD modeling. Drying Technology, 28(1), 78–93. https://doi.org/10.1080/07373930903430785
Liu, Y. A., Hamby, R. K., & Colberg, R. D. (1991). Fundamental and practical developments of magnetofluidized beds: a review. Powder Technology, 64, 3-41. https://doi.org/10.1016/0032-5910(91)80003-2
Liu, Y., Ohara, H., & Tsutsumi, A. (2016). Pulsation-assisted fl uidized bed for the fl uidization of easily agglomerated particles with wide size distributions. Powder Technology, 1–12. https://doi.org/10.1016/j.powtec.2016.12.049
Lun, C. K. K., Savage, S. B., Jeffrey, D. J., & Chepurniy, N. (1984). Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flow field. Journal of Fluid Mechanics, 140, 223–256. https://doi.org/10.1017/S0022112084000586.
Massimilla, L. (1966). A study on pulsing gas fluidization of beds of particles. Chemical Engineering Progress, 62, 63-70.
Mostafaei, F., Golshan, S., Zarghami, R., Gharebagh, R. S., & Mostoufi, N. (2020). Investigating the bubble dynamics in fluidized bed by CFD-DEM. Powder Technology, 366, 938–948. https://doi.org/10.1016/j.powtec.2020.03.011
Namdarkedenji, R., Hashemnia, K., & Emdad, H. (2018). Effect of flow pulsation on fluidization degree of gas-solid fluidized beds by using coupled CFD-DEM. Advanced Powder Technology, 29(12), 3527–3541. https://doi.org/10.1016/j.apt.2018.09.033
Nitz, M. (2007). Drying of beans in a pulsed fluid bed dryer: Drying kinetics, fluid-dynamic study and comparisons with conventional fluidization. Journal of Food Engineering, 80, 249–256. https://doi.org/10.1016/j.jfoodeng.2006.05.025
Ogawa, S., Umemura, A., Oshima, N., & Physics, I. (1980). On the equations of fully fluidized granular materials. Journal of Applied Mathematics and Physics, 31, 483-493. https://doi.org/10.1007/BF01590859
Reuge, N., Cadoret, L., Coufort-saudejaud, C., Pannala, S., Syamlal, M., & Caussat, B. (2008). Multifluid Eulerian modeling of dense gas – solids fluidized bed hydrodynamics: Influence of the dissipation parameters. Chemical Engineering Science, 63, 5540–5551. https://doi.org/10.1016/j.ces.2008.07.028
Sau, D. C., Mohanty, S., & Biswal, K. C. (2010). Experimental studies and empirical models for the prediction of bed expansion in gas-solid tapered fluidized beds. Chemical Engineering and Processing: Process Intensification, 49(4), 418-424. https://doi.org/10.1016/j.cep.2010.02.010
Schaeffer, D. G. (1987). Instability in the evolution equations describing incompressible granular flow. Journal of Differential Equations, 66(1), 19–50. https://doi.org/10.1016/0022-0396(87)90038-6
Shah, M. T., Utikar, R. P., & Pareek, V. K. (2016). CFD study: Effect of pulsating flow on gas–solid hydrodynamics in FCC riser. Particuology, 31, 25-34. https://doi.org/10.1016/j.partic.2016.07.002
Syamial, M., & O’Brien, T. J. (1989). Computer simulation of bubbles in a fluidized bed. Fluidization and Fluid Particle Systems: Fundamentals and Applications. New York, U.S.A., American Institute Chemical Engineers.
Syamlal, M., Rogers, W., & O`Brien, T. J. (1993). MFIX documentation theory guide. U.S. Department of Energy Office of Fossil Energy. https://doi.org/10.2172/10145548
Taghipour, F., Ellis, N., & Wong, C. (2005). Experimental and computational study of gas-solid fluidized bed hydrodynamics. Chemical Engineering Science, 60, 6857-6867. https://doi.org/10.1016/j.ces.2005.05.044
Van Willigen, F. K., Van Ommen, J. R., Van Turnhout, J., & Van den Bleek, C. M. (2005). Bubble size reduction in electric-field-enhanced fluidized beds. Journal of Electrostatics63(6-10), 943-948. https://doi.org/10.1016/j.elstat.2005.03.065
Wachem, B. G. M. Van, Schouterf, J. C., Krishnab, R., & Bleek, C. M. Van Den. (1998). Eulerian simulations of bubbling behaviour in gas-solid fluidised beds. Computers & Chemical Engineering, 22, 299-306.
Wang, X. S., & Rhodes, M. J. (2005). Pulsed fluidization - A DEM study of a fascinating phenomenon. Powder Technology, 159(3), 142–149. https://doi.org/10.1016/j.powtec.2005.08.007
Wong, H. W., & Baird, M. H. I. (1971). Fluidisation in a pulsed gas flow. The Chemical Engineering Journal, 2(2), 104–113. https://doi.org/10.1016/0300-9467(71)80004-7
Zhang, D., & Koksal, M. (2006). Heat transfer in a pulsed bubbling fluidized bed. Powder Technology, 168, 21–31. https://doi.org/10.1016/j.powtec.2006.06.017
Zhu, C., Liu, G., Yu, Q., Pfeffer, R., Dave, R. N., & Nam, C. H. (2004). Sound assisted fluidization of nanoparticle agglomerates. Powder Technology, 141, 119–123. https://doi.org/10.1016/j.powtec.2004.01.023