Bizhaem, H. K., & Tabrizi, H. B. (2017). Investigating effect of pulsed flow on hydrodynamics of gas-solid fluidized bed using two- fluid model simulation and experiment.
Powder Technology,
311, 328–340.
https://doi.org/10.1016/j.powtec.2017.01.027
de Oliveira, D. G., Wu, C. L., & Nandakumar, K. (2020). Numerical investigation of pulsed fluidized bed using CFD-DEM: Insights on the dynamics.
Powder Technology,
363, 745–756.
https://doi.org/10.1016/j.powtec.2020.01.016
Di Nardo, A., Calchetti, G., & Stendardo, S. (2018). Modeling and simulation of an oxygen-blown bubbling fluidized bed gasifier using the computational particle-fluid dynamics (CPFD) approach.
Journal of Applied Fluid Mechancis, 11(4), 825–834.
https://doi.org/10.29252/jafm.11.04
Dong, L., Zhang, B., Zhang, Y., Zhao, Y., Zhou, E., Lv, P., & Duan, C. (2017). Kinetic characteristics of the particles in a dense-phase pulsed fluidized bed for dry beneficiation.
Canadian Journal of Chemical Engineering,
95(6), 1133–1140.
https://doi.org/10.1002/cjce.22751
Dong, L., Zhang, Y., Zhao, Y., Peng, L., Zhou, E., Cai, L., Zhang, B., & Duan, C. (2016). Effect of active pulsing air flow on gas-vibro fluidized bed for fine coal separation.
Advanced Powder Technology,
27(5), 2257–2264.
https://doi.org/10.1016/j.apt.2016.08.012
Dong, L., Zhu, F., Li, Y., Zhao, Y., Duan, C., Ren, Y., Wang, G., He, J., & Zhang, Y. (2021). Experimental and numerical study of the characteristics of the forced oscillation in a pulsation fluidized bed (PFB) for coal separation.
Chemical Engineering Science,
234, 116459.
https://doi.org/10.1016/j.ces.2021.116459
Feng, Z., Liu, D., Zhang, W., Feng, H., & Ommen, J. R. Van. (2022). Elutriation and agglomerate size distribution in a silica nanoparticle vibro-fluidized bed.
Chemical Engineering Journal,
434(December 2021), 134654.
https://doi.org/10.1016/j.cej.2022.134654
Gao, X., Yu, J., Li, C., Panday, R., Xu, Y., Li, T., Ashfaq, H., Hughes, B., Rogers, W. A., Virginia, W., & Virginia, W. (2020). Comprehensive experimental investigation on biomass-glass beads binary fluidization: A data set for CFD model validation.
AIChE Journal, 66(2) 1–18.
https://doi.org/10.1002/aic.16843
Huang, D. S., & Levy, E. K. (2004). Heat transfer to fine powders in a bubbling fluidized bed with sound assistance.
AIChE Journal,
50(2), 302–310.
https://doi.org/10.1002/aic.10028
Ireland, E., Pitt, K., & Smith, R. (2016). A review of pulsed flow fluidisation; the effects of intermittent gas flow on fluidised gas-solid bed behaviour
. Powder Technology, 292,108 -121.
https://doi.org/10.1016/j.powtec.2016.01.018
Jia, D., Bi, X., Lim, C. J., Sokhansanj, S., & Tsutsumi, A. (2019). Heat transfer in a tapered fluidized bed of biomass particles with pulsed gas flow. Particuology, 42, 2–14. https://doi.org/10.1016/j.partic.2018.01.007
Jia, D., Cathary, O., Peng, J., Bi, X., Lim, C. J., Sokhansanj, S., Liu, Y., Wang, R., & Tsutsumi, A. (2015). Fluidization and drying of biomass particles in a vibrating fl uidized bed with pulsed gas flow.
Fuel Processing Technology,
138, 471- 482.
https://doi.org/10.1016/j.fuproc.2015.06.023
Kunii, D., & Levenspiel, O. (1991). Fluidization engineering. Butterworths, London.
Laverman, J. A., Roghair, I., Van Sint Annaland, M., & Kuipers, H. (2008). Investigation into the hydrodynamics of gas-solid fluidized beds using particle image velocimetry coupled with digital image analysis.
Canadian Journal of Chemical Engineering,
86(3), 523–535.
https://doi.org/10.1002/cjce.20054
Li, Y., Zhu, F., Zhang, Y., Zhao, Y., Zhang, G., Huang, Q., & Dong, L. (2020a). Characterization of bubble behaviors in a dense phase pulsed gas–solid fluidized bed for dry coal processing.
Particuology, 1–9. https://doi.org/10.1016/j.partic.2020.01.002
Li, H. W., Wang, L., Wang, T., & Du, C. he. (2020b). Experimental and CFD-DEM numerical evaluation of flow and heat transfer characteristics in mixed pulsed fluidized beds. Advanced Powder Technology, 31(8), 3144–3157. https://doi.org/10.1016/j.apt.2020.06.004
Li, Y., Zhou, C., Lv, G., Ren, Y., & Zhao, Y. (2021). Prediction of minimum fluidization velocity in pulsed gas – solid fluidized bed.
Chemical Engineering Journal,
417(August 2020), 127965.
https://doi.org/10.1016/j.cej.2020.127965
Li, Z., Su, W., Wu, Z., Wang, R., & Mujumdar, A. S. (2010). Investigation of flow behaviors and bubble characteristics of a pulse fluidized bed via CFD modeling.
Drying Technology,
28(1), 78–93.
https://doi.org/10.1080/07373930903430785
Liu, Y., Ohara, H., & Tsutsumi, A. (2016). Pulsation-assisted fl uidized bed for the fl uidization of easily agglomerated particles with wide size distributions.
Powder Technology, 1–12.
https://doi.org/10.1016/j.powtec.2016.12.049
Lun, C. K. K., Savage, S. B., Jeffrey, D. J., & Chepurniy, N. (1984). Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flow field. Journal of Fluid Mechanics, 140, 223–256. https://doi.org/10.1017/S0022112084000586.
Massimilla, L. (1966). A study on pulsing gas fluidization of beds of particles. Chemical Engineering Progress, 62, 63-70.
Mostafaei, F., Golshan, S., Zarghami, R., Gharebagh, R. S., & Mostoufi, N. (2020). Investigating the bubble dynamics in fluidized bed by CFD-DEM.
Powder Technology,
366, 938–948.
https://doi.org/10.1016/j.powtec.2020.03.011
Namdarkedenji, R., Hashemnia, K., & Emdad, H. (2018). Effect of flow pulsation on fluidization degree of gas-solid fluidized beds by using coupled CFD-DEM. Advanced Powder Technology, 29(12), 3527–3541. https://doi.org/10.1016/j.apt.2018.09.033
Nitz, M. (2007). Drying of beans in a pulsed fluid bed dryer: Drying kinetics, fluid-dynamic study and comparisons with conventional fluidization.
Journal of Food Engineering, 80, 249–256.
https://doi.org/10.1016/j.jfoodeng.2006.05.025
Ogawa, S., Umemura, A., Oshima, N., & Physics, I. (1980). On the equations of fully fluidized granular materials.
Journal of Applied Mathematics and Physics, 31, 483-493.
https://doi.org/10.1007/BF01590859
Reuge, N., Cadoret, L., Coufort-saudejaud, C., Pannala, S., Syamlal, M., & Caussat, B. (2008). Multifluid Eulerian modeling of dense gas – solids fluidized bed hydrodynamics: Influence of the dissipation parameters.
Chemical Engineering Science, 63, 5540–5551.
https://doi.org/10.1016/j.ces.2008.07.028
Sau, D. C., Mohanty, S., & Biswal, K. C. (2010). Experimental studies and empirical models for the prediction of bed expansion in gas-solid tapered fluidized beds.
Chemical Engineering and Processing: Process Intensification, 49(4), 418-424.
https://doi.org/10.1016/j.cep.2010.02.010
Syamial, M., & O’Brien, T. J. (1989). Computer simulation of bubbles in a fluidized bed. Fluidization and Fluid Particle Systems: Fundamentals and Applications. New York, U.S.A., American Institute Chemical Engineers.
Syamlal, M., Rogers, W., & O`Brien, T. J. (1993).
MFIX documentation theory guide. U.S. Department of Energy Office of Fossil Energy.
https://doi.org/10.2172/10145548
Taghipour, F., Ellis, N., & Wong, C. (2005). Experimental and computational study of gas-solid fluidized bed hydrodynamics.
Chemical Engineering Science, 60, 6857-6867.
https://doi.org/10.1016/j.ces.2005.05.044
Van Willigen, F. K., Van Ommen, J. R., Van Turnhout, J., & Van den Bleek, C. M. (2005). Bubble size reduction in electric-field-enhanced fluidized beds.
Journal of Electrostatics,
63(6-10), 943-948.
https://doi.org/10.1016/j.elstat.2005.03.065
Wachem, B. G. M. Van, Schouterf, J. C., Krishnab, R., & Bleek, C. M. Van Den. (1998). Eulerian simulations of bubbling behaviour in gas-solid fluidised beds. Computers & Chemical Engineering, 22, 299-306.
Zhu, C., Liu, G., Yu, Q., Pfeffer, R., Dave, R. N., & Nam, C. H. (2004). Sound assisted fluidization of nanoparticle agglomerates.
Powder Technology, 141, 119–123.
https://doi.org/10.1016/j.powtec.2004.01.023