Abbasi, S., & Gholamalipour, A. (2020). Parametric study of injection from the casing in an axial turbine.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
234(5), 582-593.
https://doi.org/10.1177/0957650919877276
Abbasi, S., & Gholamalipour, A. (2021). Performance optimization of an axial turbine with a casing injection based on response surface methodology.
Journal of the Brazilian Society of Mechanical Sciences and Engineering,
43(9), 435.
https://doi.org/10.1007/s40430-021-03155-6
Ai, W., & Fletcher, T. H. (2012). Computational analysis of conjugate heat transfer and particulate deposition on a high pressure turbine vane.
ASME. J. Turbomach, 134(4), 041020.
https://doi.org/10.1115/1.4003716
Ai, W., Murray, N., Fletcher, T. H., Harding, S., & Bons, J. P. (2011). Effect of hole spacing on deposition of fine coal flyash near film cooling holes.
Journal of Turbomachinery, 134(4), 041021.
https://doi.org/10.1115/1.4003717
Albert, J. E., & Bogard, D. G. (2012). Experimental simulation of contaminant deposition on a film cooled turbine airfoil leading edge.
Journal of Turbomachinery, 134(5), 051014.
https://doi.org/10.1115/1.4003964
Albert, J. E., & Bogard, D. G. (2013). Experimental simulation of contaminant deposition on a film-cooled turbine vane pressure side with a trench.
Journal of Turbomachinery, 135(5), 051008.
https://doi.org/10.1115/1.4007821
Barker, B., Casaday, B., Shankara, P., Ameri, A., & Bons, J. P. (2012). Coal ash deposition on nozzle guide vanes—part ii: computational modeling.
Journal of Turbomachinery.
https://doi.org/10.1115/1.4006399
Bonilla, C., Clum, C., Lawrence, M., Casaday, B., & Bons, J. P. (2013).
The effect of film cooling on nozzle guide vane deposition. Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. Volume 3B: Heat Transfer. San Antonio, Texas, USA. June 3–7, 2013. V03BT13A043. ASME.
https://doi.org/10.1115/GT2013-95081
Bonilla, C., Webb, J., Clum, C., Casaday, B., Brewer, E., & Bons, J. P. (2012). The effect of particle size and film cooling on nozzle guide vane deposition.
ASME. J. Eng. Gas Turbines Power, 134(10), 101901.
https://doi.org/10.1115/1.4007057
Bons, J. P., Prenter, R., & Whitaker, S. (2017). A Simple physics-based model for particle rebound and deposition in turbomachinery.
Journal of Turbomachinery,
139(8), 081009.
https://doi.org/10.1115/1.4035921
Borello, D, Capobianchi, P, De Petris, M, Rispoli, F, & Venturini, P. (2014).
Unsteady RANS analysis of particles deposition in the coolant channel of a gas turbine blade using a non-linear model. Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 5A: Heat Transfer. Düsseldorf, Germany. June 16–20, 2014. V05AT12A035. ASME.
https://doi.org/10.1115/GT2014-26252
Crosby, J. M., Lewis, S., Bons, J. P., Ai, W., & Fletcher, T. H. (2008). Effects of temperature and particle size on deposition in land based turbines.
Journal of Engineering for Gas Turbines & Power,
130(5), 819-825.
https://doi.org/10.1115/1.290390
Dunn, M. G. (2012). Operation of gas turbine engines in an environment contaminated with volcanic ash.
Journal of Turbomachinery,
134(5), 051001.
https://doi.org/10.1115/1.4006236
El-Batsh, H., & Haselbacher, H. (2002)
Numerical investigation of the effect of ash particle deposition on the flow field through turbine cascades. Proceedings of the ASME Turbo Expo 2002: Power for Land, Sea, and Air. Volume 5: Turbo Expo 2002, Parts A and B. Amsterdam, The Netherlands. June 3–6, 2002. pp. 1035-1043. ASME.
https://doi.org/10.1115/GT2002-30600
Hao, Z., Yang, X., & Feng, Z. (2023). Unsteady modeling of particle deposition effects on aerodynamics and heat transfer in turbine stator passages with mesh morphing.
International Journal of Thermal Sciences, 190, 108326.
https://doi.org/10.1016/j.ijthermalsci.2023.108326
Jensen, J. W., Squire, S. W., Bons, J. P., & Fletcher, T. H. (2004). Simulated land-based turbine deposits generated in an accelerated deposition facility.
Journal of Turbomachinery,
127(3), 462–470.
https://doi.org/10.1115/1.1860380
Kim, J., Dunn, M. G., Baran, A. J., Wade, D. P., & Tremba, E. L. (1993). Deposition of volcanic materials in the hot sections of two gas turbine engines.
Journal of Engineering for Gas Turbines and Power, 115(3), 641–651.
https://doi.org/10.1115/1.2906754
Kistenmacher, D. A., Davidson, F. T., & Bogard, D. G. (2013). Realistic trench film cooling with a thermal barrier coating and deposition.
American Society of Mechanical Engineers, (9).
https://doi.org/10.1115/1.4026613
Lawson, S. A., & Thole, K. A. (2010, October).
Simulations of multi-phase particle deposition on endwall film-cooling. Turbo Expo: Power for Land, Sea, and Air. (Vol. 43994, pp. 151-162).
https://doi.org/10.1115/GT2010-22376
Lawson, S. A., Thole, K. A., Okita, Y., & Nakamata, C. (2012). Simulations of multiphase particle deposition on a showerhead with staggered film-cooling holes.
Journal of Turbomachinery, 134(5), 051041.
https://doi.org/10.1115/1.4004757
Lewis, S., Barker, B., Bons, J. P., Ai, W., & Fletcher, T. H. (2010). Film cooling effectiveness and heat transfer near deposit-laden film holes.
Journal of Turbomachinery, 133(3), 031003.
https://doi.org/10.1115/1.4001190
Lee, S., Hwang, W., & Yee, K. (2018). Robust design optimization of a turbine blade film cooling hole affected by roughness and blockage. International Journal of Thermal Sciences, 133, 216-229.
Liu, C. L., Xie, G., Wang, R., & Ye, L. (2018). Study on analogy principle of overall cooling effectiveness for composite cooling structures with impingement and effusion.
International Journal of Heat and Mass Transfer,
127 (PT.B), 639-650.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.085
Lundgreen, R., Sacco, C., Prenter, R., & Bons, J. P. (2016).
Temperature effects on nozzle guide vane deposition in a new turbine cascade rig. Turbo Expo: Power for Land, Sea, and Air (Vol. 49781, p. V05AT13A021). American Society of Mechanical Engineers.
https://doi.org/10.1115/GT2016-57560
Maikell, J., Bogard, D., Piggush, J., & Kohli, A. (2011). Experimental simulation of a film cooled turbine blade leading edge including thermal barrier coating effects.
Lewis 133(1), 011014.
https://doi.org/10.1115/1.4000537
Senior, C. L., & Srinivasachar, S. (1995). Viscosity of ash particles in combustion systems for prediction of particle sticking.
Energy & Fuels, 9(2), 277-283.
https://doi.org/10.1021/ef00050a010
Sundaram, N., Barringer, M. D., & Thole, K. A. (2008). Effects of deposits on film cooling of a vane endwall along the pressure side.
Journal of Turbomachinery,
130(4), 786-791.
https://doi.org/10.1115/1.2812332
Vali, S. E., & Abbasi, S. (2022). Hypersonic drag and heat reduction mechanism of a new hybrid method of spike, multi-row discs and opposing jets aerodynamic configuration.
International Journal of Heat and Mass Transfer,
194, 123034.
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123034
Vali, S. E., & Abbasi, S. (2024). Heat and drag reduction on the hypersonic nose with a nexus between active and passive control methods.
Physics of Fluids,
36(1).
https://doi.org/10.1063/5.0176555
Yang, X., Hao, Z., Feng, Z. (2021a). Variations of cooling performance on turbine vanes due to incipient particle deposition.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 235(8), 1832-1846.
https://doi.org/10.1177/09576509211010530
Zhang, F., Liu, Z., Liu, Z., & Diao, W. (2020). Experimental study of sand particle deposition on a film-cooled turbine blade at different gas temperatures and angles of attack.
Energies,
13(4), 811.
https://doi.org/10.3390/en13040811