Chen, Y., Xiong, H., Cheng, H., Yu, C., & Xie, J. (2020). Effect of particle motion on the hydraulic collection of coarse spherical particles.
Acta Mechanica Sinica,
36(1), 72-81.
https://doi.org/10.1007/s10409-019-00922-6
Cho, S. G., Park, S., Oh, J., Min, C., Kim, H., Hong, S., Lee, T. H. (2019). Design optimization of deep-seabed pilot miner system with coupled relations between constraints.
Journal of Terramechanics,
83, 25-34.
https://doi.org/10.1016/j.jterra.2019.01.003
Guo, X. S., Fan, N., Liu, Y. H., Liu, X. L., Wang, Z. K., Xie, X. T., & Jia, Y. G. (2023). Deep seabed mining: Frontiers in engineering geology and environment.
International Journal of Coal Science & Technology,
10(1), 23.
https://doi.org/10.1007/s40789-023-00580-x
Jia, H., Yang, J., Su, X., Wang, Y., & Wu, K. (2023). Flow characteristics and hydraulic lift of Coandă effect-based pick-up method for polymetallic nodule.
Coatings,
13(2), 271.
https://doi.org/10.3390/coatings13020271
Kim, S., Cho, S. G., Lim, W., Lee, T. H., Park, S., Hong, S., Kim, H. W., Min, C. H., Choi, J. S., Ko, Y. T., Chi, S. B. (2024). Characterization of metal elements in deep-seabed polymetallic nodules: A multivariate statistical approach.
Marine Georesources & Geotechnology, 1-20.
https://doi.org/10.1080/1064119X.2024.2322024
Liu, L., Zhang, X., Tian, X., & Li, X. (2023). Numerical investigation on dynamic performance of vertical hydraulic transport in deepsea mining.
Applied Ocean Research, 130, 103443.
https://doi.org/10.1016/j.apor.2022.103443
Liu, S., Yang, J., Lyu, H., Sun, P., & Zhang, B. (2024). Experimental and numerical investigation of the effect of deep-sea mining vehicles on the discharge plumes.
Physics of Fluids,
36(3).
https://doi.org/10.1063/5.0199249
Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new k-ϵ eddy viscosity model for high reynolds number turbulent flows.
Computers & Fluids,
24(3), 227-238.
https://doi.org/10.1016/0045-7930(94)00032-T
Su, X. H., Ren, Y. W., Zhu, Z. C., Yang, H., & Jia, H. (2023). Comparative study on collection performance of two back-end methods of double-row hydraulic sluicing structure in deep-sea mining.
Advanced Powder Technology,
34(12), 104268.
https://doi.org/10.1016/j.apt.2023.104268
Xia, Q., Jia, H., Sun, J., Xi, X., & Cui, J. (2023). Study on flow characteristics of hydraulic suction of seabed ore particles.
Processes,
11(5), 1376.
https://www.mdpi.com/2227-9717/11/5/1376
Yue, Z., Zhao, G., Liu, M., & Xiao, L. (2021a). Experimental and numerical methods for obtaining flow field formed by hydraulic nodule pick-up devices.
International Journal of Offshore and Polar Engineering, (3), 31.
https://doi.org/10.17736/ijope.2021.jc827
Yue, Z., Zhao, G., Xiao, L., & Liu, M. (2021b). Comparative study on collection performance of three nodule collection methods in seawater and sediment-seawater mixture.
Applied Ocean Research,
110, 102606.
https://doi.org/10.1016/j.apor.2021.102606
Zhang, Y., Lu, X., Zhang, X., Chen, Y., Xiong, H., & Zhang, L. (2021). Experimental investigation of critical suction velocity of coarse solid particles in hydraulic collecting.
Acta Mechanica Sinica,
37(4), 613-619.
https://doi.org/10.1007/s10409-020-01022-6
Zhao, G., Xiao, L., Hu, J., Liu, M., & Peng, T. (2021a). Fluid flow and particle motion behaviors during seabed nodule pickup: an experimental study.
International Journal of Offshore and Polar Engineering, (2), 31.
https://doi.org/10.17736/ijope.2021.jc803
Zhao, G., Xiao, L., Peng, T., & Zhang, M. (2018). Experimental research on hydraulic collecting spherical particles in deep sea mining.
Energies,
11(8), 1938.
https://doi.org/10.3390/en11081938
Zhao, G., Xiao, L., Yue, Z., Liu, M., Peng, T., & Zhao, W. (2021b). Performance characteristics of nodule pick-up device based on spiral flow principle for deep-sea hydraulic collection.
Ocean Engineering,
226, 108818.
https://doi.org/10.1016/j.oceaneng.2021.108818