Attalla, M., Maghrabie, H. M., Qayyum, A., Al-Hasnawi, A. G., & Specht, E. (2017). Influence of the nozzle shape on heat transfer uniformity for in-line array of impinging air jets.
Applied Thermal Engineering, 120, 160-169.
https://doi.org/10.1016/j.applthermaleng.2017.03.134
Behbahani, A. I., & Goldstein, R. J. (1983). Local heat transfer to staggered arrays of impinging circular air jets.
Journal of Engineering for Power, 105(2), 354-360.
https://doi.org/10.1115/1.3227423
Bhagwat, A. B., & Sridharan, A. (2016). Convective heat transfer from a heated plate to the orthogonally impinging air jet.
Journal of Thermal Science and Engineering Applications, 8(4).
https://doi.org/10.1115/1.4034058
Choo, K., Friedrich, B. K., Glaspell, A. W., & Schilling, K. A. (2016). The influence of nozzle-to-plate spacing on heat transfer and fluid flow of submerged jet impingement.
International Journal of Heat and Mass Transfer, 97, 66-69.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.060
Ferrari, J., Lior, N., & Slycke, J. (2003). An evaluation of gas quenching of steel rings by multiple-jet impingement.
Journal of Materials Processing Technology, 136(1), 190-201.
https://doi.org/10.1016/s0924-0136(03)00158-4
Glaspell, A. W., Rouse, V. J., Friedrich, B. K., & Choo, K. (2019). Heat transfer and hydrodynamics of air assisted free water jet impingement at low nozzle-to-surface distances.
International Journal of Heat and Mass Transfer, 132, 138-142.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.173
Huber, A. M., & Viskanta, R. (1994). Effect of jet-jet spacing on convective heat transfer to confined, impinging arrays of axisymmetric air jets.
International Journal of Heat and Mass Transfer, 37(18), 2859-2869.
https://doi.org/10.1016/0017-9310(94)90340-9
Ichikawa, Y., Motosuke, M., Kameya, Y., Yamamoto, M., & Honami, S. (2016). Three-dimensional flow characterization of a square array of multiple circular impinging jets using stereoscopic PIV and heat transfer relation.
Journal of Visualization, 19(1), 89-101.
https://doi.org/10.1007/s12650-015-0296-8
Jensen, M. V., & Walther, J. H. (2013). Numerical Analysis of Jet Impingement Heat Transfer at High Jet Reynolds Number and Large Temperature Difference.
Heat Transfer Engineering, 34(10), 801-809.
https://doi.org/10.1080/01457632.2012.746153
Kim, W. H., & Park, T. S. (2013). Effects of noncircular inlet on the flow structures in turbulent jets.
Journal of Applied Mathematics and Physics, 1(6), 37-42.
https://doi.org/10.4236/jamp.2013.16008
Lee, J., Ren, Z., Haegele, J., Potts, G., Sik Jin, J., Ligrani, P., Fox, M. D. & Moon, H. K. (2013). Effects of Jet-to-target plate distance and reynolds number on jet array impingement heat transfer.
Journal of Turbomachinery, 136(5).
https://doi.org/10.1115/1.4025228
Nguyen, C. T., Galanis, N., Polidori, G., Fohanno, S., Popa, C. V., & Le Bechec, A. (2009). An experimental study of a confined and submerged impinging jet heat transfer using Al2O3-water nanofluid.
International Journal of Thermal Sciences, 48(2), 401-411.
https://doi.org/10.1016/j.ijthermalsci.2008.10.007
San, J. Y., & Lai, M. D. (2001). Optimum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets.
International Journal of Heat and Mass Transfer, 44(21), 3997-4007.
https://doi.org/10.1016/s0017-9310(01)00043-6
Singh, G., Sundararajan, T., & Bhaskaran, K. A. (2003). Mixing and entrainment characteristics of circular and noncircular confined jets.
Journal of Fluids Engineering, 125(5), 835-842.
https://doi.org/10.1115/1.1595676
Singh, P., Grover, N. K., Agarwal, V., Sharma, S., Singh, J., Sadeghzadeh, M., & Issakhov, A. (2021). Computational Fluid dynamics analysis of impingement heat transfer in an inline array of multiple jets.
Mathematical Problems in Engineering, 2021, 6668942.
https://doi.org/10.1155/2021/6668942
Siw, S. C., Miller, N., Alvin, M., & Chyu, M. (2016). Heat transfer performance of internal cooling channel with single-row jet impingement array by varying flow rates.
Journal of Thermal Science and Engineering Applications, 9(1).
https://doi.org/10.1115/1.4034686
Tang, Z. G., Deng, F., Wang, S. C., & Cheng, J. P. (2020). Numerical Simulation of flow and heat transfer characteristics of a liquid jet impinging on a cylindrical cavity heat sink.
Journal of Applied Fluid Mechanics, 14(3), 723-732.
https://doi.org/10.47176/jafm.14.03.31945
Vinze, R., Chandel, S., Limaye, M. D., & Prabhu, S. V. (2016). Influence of jet temperature and nozzle shape on the heat transfer distribution between a smooth plate and impinging air jets.
International Journal of Thermal Sciences, 99, 136-151.
https://doi.org/10.1016/j.ijthermalsci.2015.08.009
Xing, Y., & Weigand, B. (2013). Optimum jet-to-plate spacing of inline impingement heat transfer for different crossflow schemes.
Journal of Heat Transfer, 135(7).
https://doi.org/10.1115/1.4023562
Yang, D., Qiu, M., Wu, H., Li, Y., Jiang, Z., & Huang, K. (2023). Temperature uniformity characteristics of array jet impingement cooling with the maximum cross-flow scheme.
International Journal of Thermal Sciences, 187, 108161.
https://doi.org/10.1016/j.ijthermalsci.2023.108161
Yang, H., Liu, F., Duan, R., Shi, F., & Tian, L. (2022). Spray cooling heat transfer during glass tempering process and influencing factors on the quality of tempered glass.
International Journal of Thermal Sciences, 175, 107475.
https://doi.org/10.1016/j.ijthermalsci.2022.107475
Yazici, H., Akcay, M., Golcu, M., Koseoglu, M. F., & Sekmen, Y. (2015). Experimental investigation of transient temperature distribution and heat transfer by jet impingement in glass tempering processing.
Iranian Journal of Science and Technology Transactions of Mechanical Engineering, 39(M2), 337-349.
https://doi.org/10.22099/ijstm.2015.3244
Yu, P., Zhu, K., Shi, Q., Yuan, N., & Ding, J. (2017a). Transient heat transfer characteristics of small jet impingement on high-temperature flat plate.
International Journal of Heat and Mass Transfer, 114, 981-991.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.112
Yu, P., Zhu, K., Sun, T., Yuan, N., & Ding, J. (2017b). Heat transfer rate and uniformity of mist flow jet impingement for glass tempering.
International Journal of Heat and Mass Transfer, 115, 368-378.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.065
Zhang, H., Jia, L., Cui, L. S., & Li, C. H. (2020). Investigation on the gas jet flow performance confined in round pipe.
Journal of Applied Fluid Mechanics, 14(3), 669-680.
https://doi.org/10.47176/jafm.14.03.31847
Zhao, W., Kumar, K., & Mujumdar, A. S. (2004). Flow and heat transfer characteristics of confined noncircular turbulent impinging jets.
Drying Technology, 22(9), 2027-2049.
https://doi.org/10.1081/DRT-200034239
Zhou, T., Xu, D., Chen, J., Cao, C., & Ye, T. (2016). Numerical analysis of turbulent round jet impingement heat transfer at high temperature difference.
Applied Thermal Engineering, 100, 55-61.
https://doi.org/10.1016/j.applthermaleng.2016.02.006
Zhu, K., Yu, P., Yuan, N., & Ding, J. (2018). Transient heat transfer characteristics of array-jet impingement on high-temperature flat plate at low jet-to-plate distances.
International Journal of Heat and Mass Transfer, 127, 413-425.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.099
Zuckerman, N., & Lior, N. (2006). Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling. In G. A. Greene, J. P. Hartnett, A. Bar-Cohen & Y. I. Cho (Eds.),
Advances in Heat Transfer (Vol. 39, pp. 565-631), Elsevier.
https://doi.org/10.1016/S0065-2717(06)39006-5