Jet Array Design for the Physical Tempering Process of Ultrathin Glass

Document Type : Regular Article

Authors

1 Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China

2 Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China

3 Provincial Photoelectric Glass Key Laboratory, Changzhou Almaden Co., Ltd. Changzhou 213000, Jiangsu, China

4 School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China

10.47176/jafm.17.10.2482

Abstract

A high heat transfer rate and excellent heat transfer uniformity are crucial to the physical tempering manufacturing of glass. In the current study, numerical simulations were conducted to evaluate the influence of nozzle shape (circular, square, or triangular) on the transient heat transfer rate and uniformity during jet impingement heating using a square-array configuration at low nozzle-to-plate distances. The Reynolds number (Re) was varied between 2000 and 10000, the nozzle-to-plate distance to nozzle diameter ratio (H/D) was varied between 0.2 and 2, and the nozzle-to-nozzle spacing to nozzle diameter ratio (S/D) was set to values of 4, 5, and 7. The properties of heat transfer rate and uniformity are evaluated by the surface Nusselt number distribution, the average Nusselt number, and the coefficient of variation of temperature. The results revealed that a higher heat transfer rate and good heat transfer uniformity could be obtained only at H/D = 0.2 or 2. Furthermore, square and triangular nozzles afforded superior heat transfer rates and uniformity to the corresponding circular nozzles in specific jet configurations. Moreover, at low H/D values, non-circular nozzles can obtain a higher local maximum Nusselt number than circular nozzles, and significant axis switching occurs around the impingement hole in the center of the jet impingement wall.

Keywords

Main Subjects


Attalla, M., Maghrabie, H. M., Qayyum, A., Al-Hasnawi, A. G., & Specht, E. (2017). Influence of the nozzle shape on heat transfer uniformity for in-line array of impinging air jets. Applied Thermal Engineering, 120, 160-169. https://doi.org/10.1016/j.applthermaleng.2017.03.134
Behbahani, A. I., & Goldstein, R. J. (1983). Local heat transfer to staggered arrays of impinging circular air jets. Journal of Engineering for Power, 105(2), 354-360. https://doi.org/10.1115/1.3227423
Bhagwat, A. B., & Sridharan, A. (2016). Convective heat transfer from a heated plate to the orthogonally impinging air jet. Journal of Thermal Science and Engineering Applications, 8(4). https://doi.org/10.1115/1.4034058
Bijarchi, M. A., Eghtesad, A., Afshin, H., & Shafii, M. B. (2019). Obtaining uniform cooling on a hot surface by a novel swinging slot impinging jet. Applied Thermal Engineering, 150, 781-790. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2019.01.037
Choo, K., Friedrich, B. K., Glaspell, A. W., & Schilling, K. A. (2016). The influence of nozzle-to-plate spacing on heat transfer and fluid flow of submerged jet impingement. International Journal of Heat and Mass Transfer, 97, 66-69. https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.060
Culun, P., Celik, N., & Pihtili, K. (2018). Effects of design parameters on a multi jet impinging heat transfer. Alexandria Engineering Journal, 57(4), 4255-4266. https://doi.org/10.1016/j.aej.2018.01.022
Ekkad, S. V., & Singh, P. (2021). A Modern review on jet impingement heat transfer methods. Journal of Heat Transfer, 143(6). https://doi.org/10.1115/1.4049496
Ferrari, J., Lior, N., & Slycke, J. (2003). An evaluation of gas quenching of steel rings by multiple-jet impingement. Journal of Materials Processing Technology, 136(1), 190-201. https://doi.org/10.1016/s0924-0136(03)00158-4
Glaspell, A. W., Rouse, V. J., Friedrich, B. K., & Choo, K. (2019). Heat transfer and hydrodynamics of air assisted free water jet impingement at low nozzle-to-surface distances. International Journal of Heat and Mass Transfer, 132, 138-142. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.173
Huber, A. M., & Viskanta, R. (1994). Effect of jet-jet spacing on convective heat transfer to confined, impinging arrays of axisymmetric air jets. International Journal of Heat and Mass Transfer, 37(18), 2859-2869. https://doi.org/10.1016/0017-9310(94)90340-9
Ichikawa, Y., Motosuke, M., Kameya, Y., Yamamoto, M., & Honami, S. (2016). Three-dimensional flow characterization of a square array of multiple circular impinging jets using stereoscopic PIV and heat transfer relation. Journal of Visualization, 19(1), 89-101. https://doi.org/10.1007/s12650-015-0296-8
Ikhlaq, M., Al-Abdeli, Y. M., & Khiadani, M. (2019). Transient heat transfer characteristics of swirling and non-swirling turbulent impinging jets. Experimental Thermal and Fluid Science, 109, 109917. https://doi.org/10.1016/j.expthermflusci.2019.109917
Jensen, M. V., & Walther, J. H. (2013). Numerical Analysis of Jet Impingement Heat Transfer at High Jet Reynolds Number and Large Temperature Difference. Heat Transfer Engineering, 34(10), 801-809. https://doi.org/10.1080/01457632.2012.746153
Kim, W. H., & Park, T. S. (2013). Effects of noncircular inlet on the flow structures in turbulent jets. Journal of Applied Mathematics and Physics, 1(6), 37-42. https://doi.org/10.4236/jamp.2013.16008
Lee, J., Ren, Z., Haegele, J., Potts, G., Sik Jin, J., Ligrani, P., Fox, M. D. & Moon, H. K. (2013). Effects of Jet-to-target plate distance and reynolds number on jet array impingement heat transfer. Journal of Turbomachinery, 136(5). https://doi.org/10.1115/1.4025228
Lytle, D., & Webb, B. W. (1994). Air jet impingement heat transfer at low nozzle-plate spacings. International Journal of Heat and Mass Transfer, 37(12), 1687-1697. https://doi.org/10.1016/0017-9310(94)90059-0
Nguyen, C. T., Galanis, N., Polidori, G., Fohanno, S., Popa, C. V., & Le Bechec, A. (2009). An experimental study of a confined and submerged impinging jet heat transfer using Al2O3-water nanofluid. International Journal of Thermal Sciences, 48(2), 401-411. https://doi.org/10.1016/j.ijthermalsci.2008.10.007
San, J. Y., & Chen, J. J. (2014). Effects of jet-to-jet spacing and jet height on heat transfer characteristics of an impinging jet array. International Journal of Heat and Mass Transfer, 71, 8-17. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.079
San, J. Y., & Lai, M. D. (2001). Optimum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets. International Journal of Heat and Mass Transfer, 44(21), 3997-4007. https://doi.org/10.1016/s0017-9310(01)00043-6
Singh, A., & Prasad, B. V. S. S. S. (2020). Heat Transfer and flow visualization of equilaterally staggered jet arrangement on a flat surface.  https://doi.org/10.1115/GT2020-14196
Singh, G., Sundararajan, T., & Bhaskaran, K. A. (2003). Mixing and entrainment characteristics of circular and noncircular confined jets. Journal of Fluids Engineering, 125(5), 835-842. https://doi.org/10.1115/1.1595676
Singh, P., Grover, N. K., Agarwal, V., Sharma, S., Singh, J., Sadeghzadeh, M., & Issakhov, A. (2021). Computational Fluid dynamics analysis of impingement heat transfer in an inline array of multiple jets. Mathematical Problems in Engineering, 2021, 6668942. https://doi.org/10.1155/2021/6668942
Siw, S. C., Miller, N., Alvin, M., & Chyu, M. (2016). Heat transfer performance of internal cooling channel with single-row jet impingement array by varying flow rates. Journal of Thermal Science and Engineering Applications, 9(1). https://doi.org/10.1115/1.4034686
Tang, Z. G., Deng, F., Wang, S. C., & Cheng, J. P. (2020). Numerical Simulation of flow and heat transfer characteristics of a liquid jet impinging on a cylindrical cavity heat sink. Journal of Applied Fluid Mechanics, 14(3), 723-732. https://doi.org/10.47176/jafm.14.03.31945
Vinze, R., Chandel, S., Limaye, M. D., & Prabhu, S. V. (2016). Influence of jet temperature and nozzle shape on the heat transfer distribution between a smooth plate and impinging air jets. International Journal of Thermal Sciences, 99, 136-151. https://doi.org/10.1016/j.ijthermalsci.2015.08.009
Xing, Y., & Weigand, B. (2013). Optimum jet-to-plate spacing of inline impingement heat transfer for different crossflow schemes. Journal of Heat Transfer, 135(7). https://doi.org/10.1115/1.4023562
Yang, D., Qiu, M., Wu, H., Li, Y., Jiang, Z., & Huang, K. (2023). Temperature uniformity characteristics of array jet impingement cooling with the maximum cross-flow scheme. International Journal of Thermal Sciences, 187, 108161. https://doi.org/10.1016/j.ijthermalsci.2023.108161
Yang, H., Liu, F., Duan, R., Shi, F., & Tian, L. (2022). Spray cooling heat transfer during glass tempering process and influencing factors on the quality of tempered glass. International Journal of Thermal Sciences, 175, 107475. https://doi.org/10.1016/j.ijthermalsci.2022.107475
Yazici, H., Akcay, M., Golcu, M., Koseoglu, M. F., & Sekmen, Y. (2015). Experimental investigation of transient temperature distribution and heat transfer by jet impingement in glass tempering processing.Iranian Journal of Science and Technology Transactions of Mechanical Engineering, 39(M2), 337-349. https://doi.org/10.22099/ijstm.2015.3244
Yu, P., Zhu, K., Shi, Q., Yuan, N., & Ding, J. (2017a). Transient heat transfer characteristics of small jet impingement on high-temperature flat plate. International Journal of Heat and Mass Transfer, 114, 981-991. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.112
Yu, P., Zhu, K., Sun, T., Yuan, N., & Ding, J. (2017b). Heat transfer rate and uniformity of mist flow jet impingement for glass tempering. International Journal of Heat and Mass Transfer, 115, 368-378. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.065
Zhang, H., Jia, L., Cui, L. S., & Li, C. H. (2020). Investigation on the gas jet flow performance confined in round pipe. Journal of Applied Fluid Mechanics, 14(3), 669-680. https://doi.org/10.47176/jafm.14.03.31847
Zhao, W., Kumar, K., & Mujumdar, A. S. (2004). Flow and heat transfer characteristics of confined noncircular turbulent impinging jets. Drying Technology, 22(9), 2027-2049. https://doi.org/10.1081/DRT-200034239
Zhou, T., Xu, D., Chen, J., Cao, C., & Ye, T. (2016). Numerical analysis of turbulent round jet impingement heat transfer at high temperature difference. Applied Thermal Engineering, 100, 55-61. https://doi.org/10.1016/j.applthermaleng.2016.02.006
Zhu, K., Yu, P., Yuan, N., & Ding, J. (2018). Transient heat transfer characteristics of array-jet impingement on high-temperature flat plate at low jet-to-plate distances. International Journal of Heat and Mass Transfer, 127, 413-425. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.099
Zuckerman, N., & Lior, N. (2006). Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling. In G. A. Greene, J. P. Hartnett, A. Bar-Cohen & Y. I. Cho (Eds.), Advances in Heat Transfer (Vol. 39, pp. 565-631), Elsevier. https://doi.org/10.1016/S0065-2717(06)39006-5