Adamu, A., Zhang, J., Gidado, F., & Wang, F. (2022). An investigation of influence of windshield configuration and train length on high-speed train aerodynamic performance.
Journal of Applied Fluid Mechanics, 16(2), 337-352.
https://doi.org/10.47176/JAFM.16.02.1433
Andersson, E., Nilstam, N. G., & Ohlsson, L. (1996). Lateral track forces at high speed curving comparisons of practical and theoretical results of Swedish high speed train x2000.
Vehicle System Dynamics, 25(S1), 37-52.
https://doi.org/10.1080/00423119608969186
Baker, C., Cheli, F., Orellano, A., Paradot, N., Proppe, C., & Rocchi, D. (2009). Cross-wind effects on road and rail vehicles.
Vehicle System Dynamics, 47(8), 983-1022.
https://doi.org/10.1080/00423110903078794
Bruno, L., Horvat, M., & Raffaele, L. (2018). Windblown sand along railway infrastructures: A review of challenges and mitigation measures.
Journal of Wind Engineering and Industrial Aerodynamics, 177, 340-365.
https://doi.org/10.1016/j.jweia.2018.04.021
Chang, C., Li, T., Qin, D., & Zhang, J. (2021). On the scale size of the aerodynamic characteristics of a high-speed train.
Journal of Applied Fluid Mechanics, 15(1), 209-219.
https://doi.org/10.47176/JAFM.15.01.33041
Cheng, J. J., & Xue, C. X. (2014). The sand-damage–prevention engineering system for the railway in the desert region of the Qinghai-Tibet plateau.
Journal of Wind Engineering and Industrial Aerodynamics, 125, 30-37.
https://doi.org/10.1016/j.jweia.2013.11.016
Deng, E., Yang, W., He, X., Zhu, Z., Wang, H., Wang, Y., ... & Zhou, L. (2021a). Aerodynamic response of high-speed trains under crosswind in a bridge-tunnel section with or without a wind barrier.
Journal of Wind Engineering and Industrial Aerodynamics, 210, 104502.
https://doi.org/10.1016/j.jweia.2020.104502
Deng, G., Ma, W., Peng, Y., Wang, S., Yao, S., & Peng, S. (2021b). Experimental study on laminated glass responses of high-speed trains subject to windblown sand particles loading
. Construction and Building Materials, 300, 124332.
https://doi.org/10.1016/j.conbuildmat.2021.124332
Du, J., Yang, M., Zhang, L., Wu, F., & Huang, W. (2020). Numerical simulation of aerodynamics of train with broken windows.
Journal of Applied Fluid Mechanics, 13(5), 1443-1452.
https://doi.org/10.36884/jafm.13.05.30951
Gao, Y., Zhang, W. M., Tan, L. H. (2018). Geomorphologic mapping of wind-blown sand and causes of wind-blown sand disaster in Tieyandun gale area of Lanxin high-speed.
Journal of Desert Research, 38(03), 500-507.
https://doi.org/10.7522/j.issn.1000-694X.2017.00070
Krajnović, S., Ringqvist, P., Nakade, K., & Basara, B. (2012). Large eddy simulation of the flow around a simplified train moving through a crosswind flow.
Journal of Wind Engineering and Industrial Aerodynamics, 110, 86-99.
https://doi.org/10.1016/j.jweia.2012.07.001
Li, K., Jiang, F., Xue, C., Yang, Y. & Ge, S. (2010). Analysis on the characteristics of Gobi wind sand flow in Xijianfang section of Lanzhou-Xin Railway.
Journal of Railway Engineering, (3), 4.
https://doi.org/10.3969/j.issn.1006-2106.2010.03.004
Li, T., Zhang, J. Y., Li, Z. J., & Zhang, W. H. (2012c). Co-simulation on fluid-structure interaction of high-speed train based on Fluent and Simpack.
Chinese Journal of Computational Mechanics, 29(5), 675-680.
http://www.cqvip.com/qk/94820a/201205/43665665.html
Liu, D., Wang, Q., Zhong, M., Lu, Z., Wang, J., Wang, T., & Lv, S. (2019). Effect of wind speed variation on the dynamics of a high-speed train.
Vehicle System Dynamics, 57(2), 247-268.
https://doi.org/10.1080/00423114.2018.1459749
Liu, D., Wang, T., Liang, X., Meng, S., Zhong, M., & Lu, Z. (2020). High-speed train overturning safety under varying wind speed conditions.
Journal of Wind Engineering and Industrial Aerodynamics, 198, 104111.
https://doi.org/10.1016/j.jweia.2020.104111
Meng, X. L., Li, K., Xie, S. B. (2018). Strong wind environmental characteristics and countermeasures according to engineering divisions along a high-speed railway.
Journal of Desert Research, 38(5), 972-977.
https://doi.org/10.7522/j.issn.1000-694X.2017.00063
Montenegro, P. A., Ribeiro, D., Ortega, M., Millanes, F., Goicolea, J. M., Zhai, W., & Calçada, R. (2022). Impact of the train-track-bridge system characteristics in the runnability of high-speed trains against crosswinds-Part II: Riding comfort.
Journal of Wind Engineering and Industrial Aerodynamics, 224, 104987.
https://doi.org/10.1016/j.jweia.2022.104987
Niu, B., Tan, L., Zhang, X. J., Qu, J., An, Z., Wang, J., & Li, K. (2020). Targeted control of sand hazards for a railway in extremely arid regions using fingerprinting approaches.
Geomorphology, 361, 107189.
https://doi.org/10.1016/j.geomorph.2020.107189
Noguchi, Y., Suzuki, M., Baker, C., & Nakade, K. (2019). Numerical and experimental study on the aerodynamic force coefficients of railway vehicles on an embankment in crosswind.
Journal of Wind Engineering and Industrial Aerodynamics, 184, 90-105.
https://doi.org/10.1016/j.jweia.2018.11.019
Paz, C., Suárez, E., Gil, C., & Concheiro, M. (2015). Numerical study of the impact of windblown sand particles on a high-speed train.
Journal of Wind Engineering and Industrial Aerodynamics, 145, 87-93.
https://doi.org/10.1016/j.jweia.2015.06.008
Srivastava, S., Sivasankar, G., & Dua, G. (2022). A review of research into aerodynamic concepts for high speed trains in tunnels and open air and the air-tightness requirements for passenger comfort
. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 236(9), 1011-1025.
https://doi.org/10.1177/09544097211072973
Suzuki, M., Tanemoto, K., & Maeda, T. (2003). Aerodynamic characteristics of train/vehicles under cross winds.
Journal of Wind Engineering and Industrial Aerodynamics, 91(1-2), 209-218.
https://doi.org/10.1016/S0167-6105(02)00346-X
Wang, J., Liu, D., Gao, G., Zhang, Y., & Zhang, J. (2019). Numerical investigation of the effects of sand collision on the aerodynamic behaviour of a high-speed train subjected to yaw angles.
Journal of Applied Fluid Mechanics, 12(2), 379-389.
https://doi.org/10.29252/jafm.12.02.28788
Wang, M., Li, X. Z., Xiao, J., Zou, Q. Y., & Sha, H. Q. (2018). An experimental analysis of the aerodynamic characteristics of a high-speed train on a bridge under crosswinds.
Journal of Wind Engineering and Industrial Aerodynamics, 177, 92-100.
https://doi.org/10.1016/j.jweia.2018.03.021
Woldman, M., van der Heide, E., Schipper, D. J., Tinga, T., & Masen, M. A. (2012). Investigating the influence of sand particle properties on abrasive wear behaviour.
Wear, 294, 419-426.
https://doi.org/10.1016/j.wear.2012.07.017
Wu, J. J, Sun, H. Q., & He, L. H. (2010). Study on influencing factors of starting wind speed of sand grains. Journal of Desert Research, 30(4), 743-748. http://www.desert.ac.cn/CN/Y2010/V30/I4/743
Xiao, J. H., Yao, Z. Y., Qu, J. J., & Jiang, F. F. (2016). Characteristics and formation mechanism of extreme wind conditions in Baili wind area of Lanzhou-Xin Railway.
Chinese Railway Science, 37(3), 130-137.
https://doi.org/10.3969/j.issn.1001-4632.2016.03.19
Xiong, H. B., Yu, W. G., Chen, D. W., & Shao, X. M. (2011). Numerical study on the aerodynamic performance and safe running of high-speed trains in sandstorms.
Journal of Zhejiang University-SCIENCE A, 12(12), 971-978.
https://doi.org/10.1631/jzus.A11GT005
You, W., Kwon, H., Park, J., & Shin, Y. (2018). Effect of wind gusts on the dynamics of railway vehicles running on a curved track.
Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(4), 1103-1120.
https://doi.org/10.1177/0954409717708924
Yu, M., Liu, J., Li, T. & Zhang, Q. (2021). Safety characteristics of high-speed train operation under strong wind and rain environment.
Chinese Journal of Mechanical Engineering, 57(20), 172-180.
https://doi.org/10.3901/JME.2021.20.172
Zhang, J., Gao, G. J., Liu, T. H., & Li, Z. W. (2015). Crosswind stability of high-speed trains in special cuts.
Journal of Central South University, 22(7), 2849-2856.
https://doi.org/10.1007/s11771-015-2817-y
Zhang, J., Gao, G., Liu, T., & Li, Z. (2017a). Shape optimization of a kind of earth embankment type windbreak wall along the Lanzhou-Xinjiang railway.
Journal of Applied Fluid Mechanics, 10(4), 1189-1200.
https://doi.org/10.18869/ACADPUB.JAFM.73.241.27353
Zhang, J., He, K., Wang, J., Liu, T., Liang, X., & Gao, G. (2019a). Numerical simulation of flow around a high-speed train subjected to different windbreak walls and yaw angles.
Journal of Applied Fluid Mechanics, 12(4), 1137-1149.
https://doi.org/10.29252/JAFM.12.04.29484
Zhang, J., He, K., Xiong, X., Wang, J., & Gao, G. (2017b). Numerical simulation with a DES approach for a high-speed train subjected to the crosswind.
Journal of Applied Fluid Mechanics, 10(5), 1329-1342.
https://doi.org/10.18869/ACADPUB.JAFM.73.242.27566