ANSYS CFX, U. M. (2022). ANSYS, Inc. USA.
Arasavelli, S., Konijeti, R., & Budda, G. (2021). Influence of transverse vibrations on convective heat transfer in parallel flow tube-in-tube heat exchanger.
Heat Transfer, 50(3), 1985-2006.
https://doi.org/10.1002/htj.21965
Bejan, A. (1979). A study of entropy generation in fundamental convective heat transfer.
Journal of Heat Transfer, 101(4), 718-725.
https://doi.org/10.1115/1.3451063
Chen, X., Du, A., Li, Z., Liang, K., Wang, X., Zhang, M., & Wang, Y. (2023). Heat transfer of single-phase spray cooling on heated vibrating surfaces.
Case Studies in Thermal Engineering, 50, 103489.
https://doi.org/10.1016/j.csite.2023.103489
Chen, X., Du, A., Li, Z., Liang, K., Wang, X., Zhang, M., & Wang, Y. (2024). The effect of vibration on droplet dynamics and heat transfer of spray cooling.
Applied Thermal Engineering, 238, 122074.
https://doi.org/10.1016/j.applthermaleng.2023.122074
Chhabra, R. P., & Richardson, J. F. (1999). Non-Newtonian flow in the process industries: fundamentals and engineering applications. Oxford: Butterworth Heinemann.
Esfahani, J., & Shahabi, P. (2010). Effect of non-uniform heating on entropy generation for the laminar developing pipe flow of a high Prandtl number fluid.
Energy Conversion and Management, 51, 2087-2097.
https://doi.org/10.1016/j.enconman.2010.02.022
Gangadhar M, P., Rao, B. G., Sreenivasulu, B., & Arasavelli, S. S. (2022). Effect of vibration on heat transfer to laminar non-Newtonian nanofluid flowing through a circular pipe: A numerical analysis.
Numerical Heat Transfer, Part A: Applications, 82(11), 683-699.
https://doi.org/10.1080/10407782.2022.2083862
Mishra, S., Chandra, H. S., & Arora, A. (2019a). Effects on heat transfer and radial temperature profile of non-isoviscous vibrational flow with varying Reynolds number.
Journal of Applied Fluid Mechanics, 12(1), 135-144. https://doi.org/
10.29252/JAFM.75.253.28952
Mishra, S., Chandra, H., & Arora, A. (2019b). Application of vibration on heat transfer - A review. I-manager’s Journal on Future Engineering & Technology, 15(1), 72-81. https://doi.org/10.26634/jfet.15.1.15877
Mishra, S., Chandra, H., & Arora, A. (2019c). Effect of velocity and rheology of nanofluid on heat transfer of laminar vibrational flow through a pipe under constant heat flux.
International Nano Letters, 9, 245-256.
https://doi.org/10.1007/s40089-019-0276-4
Mishra, S., Chandra, H., & Arora, A. (2019d). Numerical investigation of the effects of velocity and particle concentration on heat transfer of vibrational flow of non-newtonian nanofluid.
I-manager’s Journal on Mathematics, 8(1), 34-46.
https://doi.org/10.26634/jmat.8.1.16239
Mishra, S., Chandra, H., & Arora, A. (2020). CFD study of heat transfer effect on nanofluid of Newtonian and non-Newtonian type under vibration.
Chemical Product and Process Modeling, 16(4), 20200027.
https://doi.org/10.1515/cppm-2020-0027
Mohammed, A., Kapan, S., Sen, M., & Celik, N. (2021). Effect of vibration on heat transfer and pressure drop in a heat exchanger with turbulator.
Case Studies in Thermal Engineering, 28, 101680.
https://doi.org/10.1016/j.csite.2021.101680
Prattipati, R., Narla, V. K., & Pendyala, S. (2021). Effect of viscosity on entropy generation for laminar flow in helical pipes.
Journal of Thermal Engineering, 7(5), 1100-1109.
https://doi.org/10.18186/thermal.977960
Setareh, M., Saffar-Avval, M., & Abdullah, A. (2019). Experimental and numerical study on heat transfer enhancement using ultrasonic vibration in a double-pipe heat exchanger.
Applied Thermal Engineering, 159, 113867.
https://doi.org/10.1016/j.applthermaleng.2019.113867
Shah, R. K., & Bhatti, M. S. (1987). Laminar convective heat transfer in ducts. In R. K. Shah, S. Kakac & W. Aung (Eds.), Handbook of single phase convective heat transfer. New York: Wiley.
Tanner, R. I. (1985). Engineering Rheology. Oxford: Clarendon Press.
Tian, S. and Barigou, M. (2015). CFD modelling of oscillatory perturbed advection in viscous flows [Ph.D. thesis, University of Birmingham]. Birmingham, UK.
Wang, W., Zhang, Y., Liu, J., Wu, Z., Li, B., & Sundén, B. (2018). Entropy generation analysis of fully-developed turbulent heat transfer flow in inward helically corrugated tubes.
Numerical Heat Transfer, Part A: Applications, 73(11), 788-805.
https://doi.org/10.1080/10407782.2018.1459137
Zamzari, F., Mehrez, Z., & Cafsi, A. (2017). Numerical investigation of entropy generation and heat transfer of pulsating flow in a horizontal channel with an open cavity.
Journal of Hydrodynamices, 29, 632-646.
https://doi.org/10.1016/S1001-6058(16)60776-X
Zhao, Y., Wu, H., & Dang, C. (2023). effect of mechanical vibration on heat and mass transfer performance of pool boiling process in porous media : a literature review.
Frontiers in Energy Research, 11, 1288515.
https://doi.org/10.3389/fenrg.2023.1288515