Chaotic Analysis of the Reversible Pump Turbine Exhaust Process in Pump Mode Based on a Data-driven Method

Document Type : Regular Article

Authors

1 College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China

2 Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, China Agricultural University, Beijing 100083, China

3 College of Engineering, China Agricultural University, Beijing 100083, China

4 Dongfang Electric Machinery Co. Ltd., Deyang, Sichuan, 618000, China

Abstract

Due to the important strategic position of Pumped Storage Power Plants (PSPP) in global energy upgrading, conducting in-depth research on the various operating conditions of pump turbine units is important for their safe and stable operation. This study sought to clarify the gas–liquid phase motion and the nonlinear chaotic characteristics of the process of exhaust and pressurization in pump mode; with the simplified objective model proposed here, a visualization of the process is achieved using data-driven methods, and the nonlinear characteristics of gas–liquid phase motion during the process are theoretically demonstrated. A method that combines data-driven and chaotic analysis is proposed to qualitatively and quantitatively analyze the force and torque time-series signals of the runner under different exhaust rates. The results indicate that the chaotic characteristics of the force signals and torque signals of the runner are not in a single linear relationship with the exhaust rates. Therefore, this research also provides guidance on exhaust rates with the aim of informing actual engineering practice, the purpose of which is to reduce the vibration amplitude caused by repetitive torque and improve the stability of the unit operations.

Keywords

Main Subjects


Abarbanel, H. D. I., Brown, R., Sidorowich, J. J., & Tsimring, L. S. (1993). The analysis of observed chaotic data in physical systems. Reviews of Modern Physics, 65(4), 1331-1392. http://doi.org/10.1103/RevModPhys.65.1331
Al-Obaidi A. R. (2024a). Evaluation and investigation of hydraulic performance characteristics in an axial pump based on CFD and acoustic analysis. Processes, 12(1), 129. http://doi.org/10.3390/pr12010129
Al-Obaidi, A. R. (2018). Experimental and numerical investigations on the cavitation phenomenon in a centrifugal pump [Doctoral thesis, University of Huddersfield]. http://eprints.hud.ac.uk/id/eprint/34513/
Al-Obaidi, A. R. (2019). Investigation of effect of pump rotational speed on performance and detection of cavitation within a centrifugal pump using vibration analysis. Heliyon, 5(6), e1910. http://doi.org/10.1016/j.heliyon.2019.e01910
Al-Obaidi, A. R. (2023). Experimental diagnostic of cavitation flow in the centrifugal pump under various impeller speeds based on acoustic analysis method. Archives of Acoustics, 48(2), 159-170. http://doi.org/10.24425/aoa.2023.145234
Al-Obaidi, A. R. (2024b). Effect of different guide vane configurations on flow field investigation and performances of an axial pump based on CFD analysis and vibration investigation. Experimental Techniques, 48(1), 69-88. http://doi.org/10.1007/s40799-023-00641-5
Al-Obaidi, A. R., & Alhamid, J. (2023). Investigation of the main flow characteristics mechanism and flow dynamics within an axial flow pump based on different transient load conditions. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 47(4), 1397-1415. http://doi.org/10.1007/s40997-022-00586-x
Al-Obaidi, A. R., Khalaf, H. A., & Alhamid, J. (2022a). Investigation on the characteristics of internal flow within three-dimensional axial pump based on different flow conditions. Proceedings of the 4th International Conference on Science Education in The Industrial Revolution 4.0. ICONSEIR 2022. http://dx.doi.org/10.4108/eai.24-11-2022.2332720
Al-Obaidi, A. R., Khalaf, H. A., & Alhamid, J. (2022b). Investigation of the influence of varying operation configurations on flow behaviors characteristics and hydraulic axial-flow pump performance. Proceedings of the 4th International Conference on Science Education in The Industrial Revolution 4.0. ICONSEIR 2022. http://dx.doi.org/10.4108/eai.24-11-2022.2332719
Ardizzon, G., Cavazzini, G., & Pavesi, G. (2014). A New generation of small hydro and pumped-hydro power plants: advances and future challenges. Renewable and Sustainable Energy Reviews, 31, 746-761. http://doi.org/10.1016/j.rser.2013.12.043
Bandt, C., & Pompe, B. (2002). Permutation entropy: a natural complexity measure for time series. Physical Review Letters, 88(17), 174102. http://doi.org/10.1103/PhysRevLett.88.174102
Breedon, J., & packard, N. (1992). Nonlinear-analysis of data sampled nonuniformly in time. Physica D-Nonlinear Phenomena, 58(1-4), 273-283. http://doi.org/10.1016/0167-2789(92)90115-4
Casdagli, M., Eubank, S., Farmer, J. D., & Gibson, J. (1991). A theory of state space reconstruction in the presence of noise. Springer US.
Cavazzini, G., Houdeline, J., Pavesi, G., Teller, O., & Ardizzon, G. (2018). Unstable behaviour of pump-turbines and its effects on power regulation capacity of pumped-hydro energy storage plants. Renewable and Sustainable Energy Reviews, 94, 399-409. http://doi.org/10.1016/j.rser.2018.06.018
Celik, I. B., Ghia, U., Roache, P. J., & Freitas, C. J. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering-Transactions of the ASME, 130(7). http://doi.org/10.1115/1.2960953
Choi, J., & Yoon, S. B. (2009). Numerical simulations using momentum source wave-maker applied to RANS equation model. Coastal Engineering, 56(10), 1043-1060. http://doi.org/10.1016/j.coastaleng.2009.06.009
Fahlbeck, J., Nilsson, H., & Salehi, S. (2021). Flow characteristics of preliminary shutdown and startup sequences for a model counter-rotating pump-turbine. Energies, 14(12), 3593. http://doi.org/10.3390/en14123593
Fengxia, S., Junhu, Y., Senchun, M., & Xiaohui, W. (2019). Investigation on the power loss and radial force characteristics of pump as turbine under gas–liquid two-phase condition. Advances in Mechanical Engineering, 11(4), 2072153461. http://doi.org/10.1177/1687814019843732
Gallavotti, G. (1996). Equivalence of dynamical ensembles and navier-stokes equations. Physics Letters A, 223(1-2), 91-95. http://doi.org/10.1016/S0375-9601(96)00729-3
Guo, W., & Xu, X. (2022). Sliding mode control of regulating system of pumped storage power station considering nonlinear pump-turbine characteristics. Journal of Energy Storage, 52, 105071. http://doi.org/10.1016/j.est.2022.105071
Hanjra, M. A., & Qureshi, M. E. (2010). Global water crisis and future food security in an era of climate change. Food Policy, 35(5), 365-377. http://doi.org/10.1016/j.foodpol.2010.05.006
Jain, S. V., & Patel, R. N. (2014). Investigations on pump running in turbine mode: a review of the state-of-the-art. Renewable and Sustainable Energy Reviews, 30, 841-868. http://doi.org/10.1016/j.rser.2013.11.030
Ji, Q., & Zhang, D. (2019). How much does financial development contribute to renewable energy growth and upgrading of energy structure in china? Energy Policy, 128, 114-124. http://doi.org/10.1016/j.enpol.2018.12.047
Kan, K., Chen, H., Zheng, Y., Zhou, D., Binama, M., & Dai, J. (2021). Transient characteristics during power-off process in a shaft extension tubular pump by using a suitable numerical model. Renewable Energy, 164, 109-121. http://doi.org/10.1016/j.renene.2020.09.001
Kim, H. S., Eykholt, R., & Salas, J. D. (1999). Nonlinear dynamics, delay times, and embedding windows. Physica. D, 127(1), 48-60. http://doi.org/10.1016/S0167-2789(98)00240-1
Li, D., Wang, H., Li, Z., Nielsen, T. K., Goyal, R., Wei, X., & Qin, D. (2018). Transient characteristics during the closure of guide vanes in a pump-turbine in pump mode. Renewable Energy, 118, 973-983. http://doi.org/10.1016/j.renene.2017.10.088
Liu, M., Tan, L., & Cao, S. (2019). Dynamic mode decomposition of gas-liquid flow in a rotodynamic multiphase pump. Renewable Energy, 139, 1159-1175. http://doi.org/10.1016/j.renene.2019.03.015
Matilla-García, M., Morales, I., Rodríguez, J. M., & Ruiz Marín, M. (2021). Selection of embedding dimension and delay time in phase space reconstruction via symbolic dynamics. Entropy, 23(2), 221. http://doi.org/10.3390/e23020221
Menter, F. R., Kuntz., M., & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. Turbulence Heat and Mass Transfer, 4(1), 625-632.
Mezi, I. (2005). Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dynamics, 41(1-3), 309-325. http://doi.org/10.1007/s11071-005-2824-x
Murakami, T., & Kanemoto, T. (2013). Counter-rotating type pump-turbine unit cooperating with wind power unit. Journal of Thermal Science, 22(1), 7-12. http://doi.org/10.1007/s11630-013-0585-2
Nishioka, S. (2023). A challenge for sustainability science: can we halt climate change? Sustainability Science, 19, 7-18. http://doi.org/10.1007/s11625-023-01405-1
Rajendra Acharya, U., Paul Joseph, K., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: a review. Medical & Biological Engineering & Computing, 44(12), 1031-1051. http://doi.org/10.1007/s11517-006-0119-0
Rezaeiha, A., Montazeri, H., & Blocken, B. (2019). On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy, 180, 838-857. http://doi.org/10.1016/j.energy.2019.05.053
Rosenstein, L., Ridgel, A. L., Thota, A., Sarnarne, B., & Alberts, J. L. (2008). Effects of combined robotic therapy and repetitive-task practice on upper-extremity function in a patient with chronic stroke. American Journal of Occupational Therapy, 62(1), 28-35. http://doi.org/10.5014/ajot.62.1.28
Sauer, T., Yorke, J., & Casdagli, M. (1991). Embedology. Journal of Statistical Physics, 65(3-4), 579-616. http://doi.org/10.1007/BF01053745
Staub, S., Bazan, P., Braimakis, K., Müller, D., Regensburger, C., Scharrer, D., Schmitt, B., Steger, D., German, R., Karellas, S., Pruckner, M., Schlücker, E., Will, S., & Karl, J. (2018). Reversible heat pump–organic rankine cycle systems for the storage of renewable electricity. Energies, 11(6), 1352. http://doi.org/10.3390/en11061352
Vick, B. D., & Neal, B. A. (2012). Analysis of off-grid hybrid wind turbine/solar pv water pumping systems. Solar Energy, 86(5), 1197-1207. http://doi.org/10.1016/j.solener.2012.01.012
Wanfeng, H., Zhengwei, W., & Honggang, F. (2021). Grid Synchronization of Variable Speed Pump-Turbine Units in Turbine Mode. Renewable Energy, 173, 625-638. http://doi.org/10.1016/j.renene.2021.04.012
Wolf, A., Swift, J., Swinney, H., & Vastano, J. (1985). Determining lyapunov exponents from a time-series. Physica D-Nonlinear Phenomena, 16(3), 285-317. https://doi.org/10.1016/0167-2789(85)90011-9
Zhang, F., Zhu, D., Xiao, R., Liu, W., & Tao, R. (2023). Numerical investigation on the transient gas–liquid flow in the rapid switching process of pump turbine. Energy Science & Engineering, 1-15. http://doi.org/10.1002/ese3.1482
Zhang, X., Tang, F., Liu, C., Shi, L., Liu, H., Sun, Z., & Hu, W. (2021). Numerical simulation of transient characteristics of start-up transition process of large vertical siphon axial flow pump station. Frontiers in Energy Research, 9, http://doi.org/10.3389/fenrg.2021.706975
Zhao, W., Egusquiza, M., Valero, C., Valentín, D., Presas, A., & Egusquiza, E. (2020). On the use of artificial neural networks for condition monitoring of pump-turbines with extended operation. Measurement, 163, 107952. http://doi.org/10.1016/j.measurement.2020.107952
Zheng, Y., Chen, Q., Yan, D., & Liu, W. (2020). A two-stage numerical simulation framework for pumped-storage energy system. Energy Conversion and Management, 210, 112676. http://doi.org/10.1016/j.enconman.2020.112676
Zhou, J., Zhang, C., Peng, T., & Xu, Y. (2018). Parameter identification of pump turbine governing system using an improved backtracking search algorithm. Energies, 11(7), 1668. http://doi.org/10.3390/en11071668
Zuo, Z., Fan, H., Liu, S., & Wu, Y. (2016). S-shaped characteristics on the performance curves of pump-turbines in turbine mode – A review. Renewable and Sustainable Energy Reviews, 60, 836-851. http://doi.org/10.1016/j.rser.2015.12.312