Stabilizing Pipe Flow by Flattening the Velocity Profile

Document Type : Regular Article

Authors

1 Faculty of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China

2 School of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang, 310018, China

3 College of Aeronautics, Guizhou Vocational Technology Institute, Guiyang, Guizhou, 550023, China

Abstract

It is important to control turbulence in industrial processes. Past experimental and numerical researches have shown that a turbulent puff in pipe flow can be removed or delayed by flattening the profile of the upstream velocity because a flattened velocity profile causes the point of inflection on it to collapse. The energy gradient theory has been developed to study turbulent transition, and the relevant studies have shown that turbulence arises due to the generation of singularities in the flow field. In pressure-driven flows like the pipe flow, the point of inflection on the velocity profile leads to the appearance of a singular point in the unsteady Navier–Stokes equation. In this study, the energy gradient theory is used to demonstrate why the point of inflection on the profile of velocity of pipe flow is the critical point for generating turbulence. Then, it is shown how flattening the velocity profile leads to the elimination of the point of inflection on the velocity profile of pipe flows to delay turbulent transition. It is also clarified why this technique is not effective at higher Reynolds number because the flattened velocity profile violates the criterion for flow stability relating to transition to turbulence.

Keywords

Main Subjects


Brito, M., Sanches, P., Ferreira, R. M. L., & Covas, D. I. C. (2016). Experimental study of the transient flow in a coiled pipe using PIV. ASCE Journal of Hydraulic Engineering, 143, 04016087. https://doi.org/10.1061/(ASCE)HY.1943- 7900.0001253
Brunone, B., & Berni, A. (2010). Wall shear stress in transient turbulent pipe flow by local velocity measurement. ASCE Journal of Hydraulic Engineering, 136, 716-726. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000234
Chapman, S. J. (2002). Subcritical transition in channel flows. Journal of Fluid Mechanics, 451, 35-97. https://doi.org/10.1017/S0022112001006255
Dou, H. S. (2006). Mechanism of flow instability and transition to turbulence. International Journal of Non-Linear Mechanics, 41(4), 512-517. https://doi.org/10.1016/j.ijnonlinmec.2005.12.002
Dou, H. S. (2011). Physics of flow instability and turbulent transition in shear flows. International Journal of Physical Science, 6(6), 1411-1425. http://arxiv.org/abs/physics/0607004.
Dou, H. S. (2021). Singularity of Navier-Stokes equations leading to turbulence. Advances in Applied Mathematics and Mechanics, 13(3), 527-553. https://doi.org/10.4208/aamm.OA-2020-0063
Dou, H. S. (2022a). No existence and smoothness of solution of the Navier-Stokes equation. Entropy, 24(2), 339. https://doi.org/10.3390/e24030339
Dou, H. S. (2022b). Origin of turbulence-energy gradient theory. Springer. https://link.springer.com/book/10.1007/978-981-19-0087-7
Dou, H. S., & Khoo, B. C. (2009). Mechanism of wall turbulence in boundary layer flows. Modern Physics Letters B, 23 (3), 457-460. http://arxiv.org/abs/0811.1407
Dou, H. S., & Khoo, B. C. (2010). Criteria of turbulent transition in parallel flows. Modern Physics Letters B, 24 (13),1437-1440.  http://arxiv.org/abs/0906.0417
Dou, H. S., & Khoo, B. C. (2011). Investigation of turbulent transition in plane Couette flows using energy gradient method. Advances in Applied Mathematics and Mechanics, 3(2), 165-180. http://arxiv.org/abs/nlin.CD/0501048
Dou, H. S., Khoo, B. C., & Yeo K. S. (2008). Instability of Taylor-Couette flow between concentric rotating cylinders. International Journal of Thermal Sciences, 47(11), 1422-1435. https://doi.org/10.48550/arXiv.physics/0502069
Fargie, D., & Martin, B. W. (1971). Developing laminar flow in a pipe of circular cross-section. Proceedings of the Royal Society London A, 321, 461-476. https://www.jstor.org/stable/77808
Hof, B., de Lozar, A., Avila, M., Tu, X., & Schneider, T.M. (2010a). Eliminating turbulence in spatially intermittent flows. Science, 327(5972), 1491-1494. https://www.science.org/doi/10.1126/science.1186091
Hof, B., de Lozar, A., Avila, M., Tu, X., & Schneider, T.M. (2010b). Eliminating turbulence in spatially intermittent flows: supporting online materials. Science, 327(5972), 1491-1494. www.sciencemag.org/cgi/content/full/327/5972/1491/DC1 /Hof-SOM.pdf
Hof, B., Juel, A., & Mullin, T. (2003). Scaling of the turbulence transition threshold in a pipe. Physical Review Letters, 91, 244502. https://doi.org/10.1103/PhysRevLett.91.244502
Kline, S. J., Reynolds, W. C., Schraub, F. A., & Runstadler, P.W. (1967). The structure of turbulent boundary layers. Journal of Fluid Mechanics, 30, 741-773. http://journals.cambridge.org/abstract_S0022112067001740
Lundbladh, A., Henningson, D. S., & Reddy, S. C. (1994). Threshold amplitudes for transition in channel flows. Transition, turbulence and Combustion, 1, 309-318. http://doi.org/10.1007/978-94-011-1032-7_30
Nishi, M., Unsal, B., Durst, F., & Biswas, G. (2008). Laminar-to-turbulent transition of pipe flows through puffs and slugs. Journal of Fluid Mechanics, 614, 425-446. http://doi.org/10.1017/S0022112008003315
Nishioka, M., Iida, S., & Ichikawa, Y. (1975). An experimental investigation of the stability of plane Poiseuille flow. Journal of Fluid Mechanics, 72(4), 731-751. https://doi.org/10.1017/S0022112075003254
Panton, R. L. (2001). Overview of the self-sustaining mechanisms of wall turbulence. Progress in Aerospace Sciences, 37, (4), 341-383.  https://arc.aiaa.org/doi/10.2514/6.2001-2911
Peixinho, J., & Mullin, T. (2007). Finite-amplitude thresholds for transition in pipe flow. Journal of Fluid Mechanics, 582, 169-178. https://doi.org/10.1017/S0022112007006398
Rayleigh, L. (1880). On the stability or instability of certain fluid motions. Proceedings of the London Mathematical Society, s1-11, 57–72. https://doi.org/10.1112/plms/s1-11.1.57
Robinson, S. K. (1991). Coherent motion in the turbulent boundary layer. Annual Review of Fluid Mechanics, 23, 601-639. https://www.annualreviews.org/doi/10.1146/annurev.fl.23.010191.003125
Schlichting, H., & Gersten, K. (2017). Boundary-layer theory. Springer. https://link.springer.com/book/10.1007/978-3-662-52919-5