Monitoring the Wake of Low Reynolds Number Airfoils for Their Aerodynamic Loads Assessment

Document Type : Regular Article

Authors

Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India

Abstract

Experimental investigations are carried out to explore the aerodynamic performance and vortex shedding characteristics of S5010 and E214 airfoil-based wings to provide guidance for the design of MAVs and other low-speed vehicles. Force and wake shedding frequency measurements are carried out in a subsonic wind tunnel in the Reynolds number (Re) range of 4 × 104 - 1 × 105. The measurements with increasing Re show that the slope of the lift curve in the linear region increases by 14% for S5010, while this increment is 11% for E214. The peak lift coefficient of both airfoils reduces with reducing Re. For lower pitch angles, the influence of Re on drag coefficients is less significant, but at higher angles, the drag increases as the Re drops. Unlike pre-stall mountings, the pitch-down propensity of the airfoil enhances in the post-stall region for high Re flows. Moreover, the frequency of shed vortices reduces with rising angle of attack at a given Re. In contrast, the Strouhal number almost remains constant with varying Re at a fixed angle of attack. For S5010 and E214 airfoils, the Strouhal number is noticed to vary between 0.68 - 0.36 and 0.58 - 0.36, respectively, for pitch angle variation of 12°- 28°. The airfoils show a higher Strouhal number than the bluff body wakes, but this difference decreases for high angles of attack mountings. This finding reveals that the wake structure of the airfoil at a high post-stall angle behaves as bluff body wakes.

Keywords

Main Subjects


Ananda, G. K., Sukumar, P. P., & Selig, M. S. (2012). Low-to-moderate aspect ratio wings tested at low Reynolds numbers. 30th AIAA Applied Aerodynamics Conference, New Orleans, Louisiana. https://doi.org/10.2514/6.2012-3026
Anderson, J. D. (2011). Fundamentals of Aerodynamics. 5th Edition, McGraw–Hill, New York.
Bai, P., Li, F., Liu, Q., & Zhan, H. (2016). Evolution of the non-linear and unsteady low Reynolds number laminar separation bubble around the airfoil with small angle of attack. 46th AIAA Fluid Dynamics Conference,Washington, D. C. https://doi.org/10.2514/6.2016-4337
Brendel, M., & Mueller, T. J. (1988). Boundary-layer measurements on an airfoil at low Reynolds numbers. Journal of Aircraft, 25(7), 612–617. https://doi.org/10.2514/3.45631
Bruun, H. H. (1995). Hot-Wire Anemometry: Principles and Signal Analysis. Oxford University Press Inc., New York.
Carmichael, B. H. (1981). Low Reynolds number airfoil survey Vol. 1. NASA Contractor Report 165803.
Chen, J. M., & Fang, Y. C. (1996). Strouhal numbers of inclined flat plates. Journal of Wind Engineering and Industrial Aerodynamics, 61, 99–112. https://doi.org/10.1016/0167-6105(96)00044-X
Gerakopulos, R., Boutilier, M. S. H., & Yarusevych, S. (2010). Aerodynamic characterization of a NACA 0018 airfoil at low Reynolds numbers. 40th AIAA Fluid Dynamics Conference, 1–13. https://doi.org/10.2514/6.2010-4629
Gerontakos, P., & Lee, T. (2005). Near wake behind an airfoil with leading-edge flow control. Journal of Aircraft, 42(2), 561–567. https://doi.org/10.2514/1.9778
Hu, H., & Yang, Z. (2008). An experimental study of the laminar flow separation on a low-Reynolds-number airfoil. Journal of Fluids Engineering, Transactions of the ASME, 130(5), 0511011–05110111. https://doi.org/10.1115/1.2907416
Hu, H., Yang, Z., & Igarashi, H. (2007). Aerodynamic hysteresis of a low-Reynolds-number airfoil. Journal of Aircraft, 44(6), 2083-2086. https://doi.org/10.2514/1.32662
Huang, R. F., & Lee, H. W. (2000). Turbulence effect on frequency characteristics of unsteady motions in wake of wing. AIAA Journal, 38(1), 87–94. https://doi.org/10.2514/3.14382
Huang, R. F., & Lin, C. L. (1995). Vortex shedding and shear-layer instability of wing at low-Reynolds numbers. AIAA Journal, 33(8), 1398–1403. https://doi.org/10.2514/3.12561
Katopodes, N. D. (2019). Viscous Fluid Flow. In K. McCombs, Free-Surface Flow (pp. 324–426). Butterworth-Heinemann. https://doi.org/10.1016/b978-0-12-815489-2.00005-8
Laitone, E. V. (1997). Wind tunnel tests of wings at Reynolds numbers below 70,000. Experiments in Fluids, 23(5), 405–409. https://doi.org/10.1007/s003480050128
Lienhard, J. H. (1966). Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders. Bulletin 300. Washington State University, Research Div., Bulletin 300.
Lissaman, P. B. S. (1983). Low-Reynolds-number airfoils. Annual Review of Fluid Mechanics, 15(1), 223–239. https://doi.org/10.1146/annurev.fl.15.010183.001255
Lyon, C. A., Broeren, A. P., Gigu`ere, P., Gopalarathnam, A., & Selig, M. S. (1997). Summary of Low-speed airfoil data, Vol 3. SoarTech Publications, Virginia Beach, Virginia.
Marchman, J. F., Abtahi, A. A., Sumantran, V., & Sun, Z. (1985). Effects of aspect ratio on stall hysteresis for the Wortmann airfoil. 12th Atmospheric Flight Mechanics Conference, 44–49. https://doi.org/10.2514/6.1985-1770
Marchman, J. F., Sumantran, V., & Schaefer, C. G. (1987). Acoustic and turbulence influences on stall hysteresis. AIAA Journal, 25(1), 50–51. https://doi.org/10.2514/3.9578
McGhee, R. J., & Walker, B. S. (1988). Experimental results for the eppler 387 airfoil at low reynolds numbers in the langley low- turbulence pressure tunnel. NASA TM 4062.
McMasters, J. H., & Henderson, M. L. (1979). Low-speed single-element airfoil synthesis. Technical Soaring, 6(2), 1–21.
Meng, X., Hu, H., Yan, X., Liu, F., & Luo, S. (2018). Lift improvements using duty-cycled plasma actuation at low Reynolds numbers. Aerospace Science and Technology, 72, 123–133. https://doi.org/10.1016/j.ast.2017.10.038
Mizoguchi, M., & Itoh, H. (2013). Effect of aspect ratio on aerodynamic characteristics at low Reynolds numbers. AIAA Journal, 51(7), 1631–1639. https://doi.org/10.2514/1.J051915
Mizoguchi, M., Kajikawa, Y., & Itoh, H. (2014). Static stall hysteresis of low-aspect-ratio wings. 32nd AIAA Applied Aerodynamics Conference. https://doi.org/10.2514/6.2014-2014
Moffat, R. J. (1988). Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science, 1, 3–17. https://doi.org/10.1016/0894-1777(88)90043-X
Mueller, T. J. (1985a). Low Reynolds Number Vehicles. Advisory Group for Aerospace Research and Development, AG-288.
Mueller, T. J. (1985b). The influence of laminar separation and transition on low Reynolds number airfoil hysteresis. Journal of Aircraft, 22(9), 763–770. https://doi.org/10.2514/3.45199
Mueller, T. J. (1999). Aerodynamic measurements at low Reynolds numbers for fixed wing micro-air vehicles. RTO AVT/VKI Special Course on Development and Operation of UAVs for Military and Civil Applications, University of Notre Dame.
Mueller, T. J., & Batill, S. M. (1982). Experimental studies of the laminar separation bubble on a two-dimensional airfoil at low Reynolds numbers. AIAA Journal, 20(4), 457–463. https://doi.org/10.2514/6.1980-1440
Nelson, R. C. (1998). Flight stability and automatic control. 2nd Edition, McGraw Hill, New York.
O’Meara, M. M., & Mueller, T. J. (1987). Laminar separation bubble characteristics on an airfoil at low Reynolds number. AIAA Journal, 25(8). https://doi.org/10.2514/6.1986-1065
Oertel, H. (1990). Wakes behind blunt bodies. Annual Review of Fluid Mechanics, 22, 539–564. https://doi.org/10.1146/annurev.fluid.22.1.539
Okamoto, M., Yasuda, K., & Azuma, A. (1996). Aerodynamic characteristics of the wings and body of a dragonfly. Journal of Experimental Biology, 199(2), 281–294. https://doi.org/10.1242/jeb.199.2.281
Park, D., Shim, H., & Lee, Y. (2020). PIV measurement of separation bubble on an airfoil at low Reynolds numbers. Journal of Aerospace Engineering, 33(1), 04019105:1-17. https://doi.org/10.1061/(asce)as.1943-5525.0001099
Roshko, A. (1954a). On the development of turbulent wakes from vortex streets. NACA-TR-1191.
Roshko, A. (1954b). On the drag and shedding frequency of two-dimensional bluff bodies. NACA-TN-3169.
Schmitz, F. W. (1967). Aerodynamics of the model airplane. Part-1. Airfoil Measurements. RSIC-721-PT-1.
Selig, M. S., Donovan, J. F., & Fraser, D. B. (1989). Airfoils at low speeds. Soartect 8, SoarTech Publications, 1504 North Horseshoe Circle Virginia Beach, Virginia.
Selig, M. S., Guglielmo, J. J., Broern, A. P., & Giguere, P. (1996a). Experiments on airfoils at low Reynolds numbers. 34th Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.1996-62
Selig, M. S., Lyon, C. A., Giguere, P., Ninham, C. P., & Guglielmo, J. J. (1996b). Summary of low-speed airfoil data, Vol 2. SoarTech Publications, Virginia Beach.
Siram, O., Kumar, R., Saha, U. K., & Sahoo, N. (2022). Wind tunnel probe into an array of small-scale horizontal-axis wind turbines operating at low tip speed ratio conditions. Journal of Energy Resources Technology, Transactions of the ASME, 144(9), 1–13. https://doi.org/10.1115/1.4053579
Torres, G. E., & Mueller, T. J. (2004). Low-aspect-ratio wing aerodynamics at low Reynolds numbers. AIAA Journal, 42(5), 865–873. https://doi.org/10.2514/1.439
Van Treuren, K. W. (2015). Small-scale wind turbine testing in wind tunnels under low Reynolds number conditions. Journal of Energy Resources Technology, Transactions of the ASME, 137(5), 1–11. https://doi.org/10.1115/1.4030617
Wang, S., Zhou, Y., Alam, M. M., & Yang, H. (2014). Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers. Physics of Fluids, 26(11). https://doi.org/10.1063/1.4901969
Winslow, J., Otsuka, H., Govindarajan, B., & Chopra, I. (2018). Basic understanding of airfoil characteristics at low Reynolds numbers (104–105). Journal of Aircraft, 55(3), 1050–1061. https://doi.org/10.2514/1.C034415
Yang, Y., Li, C., Pröbsting, S., Liu, X., Liu, Y., & Arcondoulis, E. J. G. (2023). Hysteresis effect on airfoil stall noise and flow field. Physics of Fluids, 35(9). https://doi.org/10.1063/5.0160288
Yarusevych, S., & Boutilier, M. S. H. (2011). Vortex shedding of an airfoil at low Reynolds numbers. AIAA Journal, 49(10), 2221–2227. https://doi.org/10.2514/1.J051028
Yarusevych, S., Sullivan, P. E., & Kawall, J. G. (2006). Coherent structures in an airfoil boundary layer and wake at low Reynolds numbers. Physics of Fluids, 18(4). https://doi.org/10.1063/1.2187069
Yarusevych, S., Sullivan, P. E., & Kawall, J. G. (2009). On vortex shedding from an airfoil in low-Reynolds-number flows. Journal of Fluid Mechanics, 632, 245–271. https://doi.org/10.1017/S0022112009007058