Ananda, G. K., Sukumar, P. P., & Selig, M. S. (2012).
Low-to-moderate aspect ratio wings tested at low Reynolds numbers. 30th AIAA Applied Aerodynamics Conference, New Orleans, Louisiana.
https://doi.org/10.2514/6.2012-3026
Anderson, J. D. (2011). Fundamentals of Aerodynamics. 5th Edition, McGraw–Hill, New York.
Bai, P., Li, F., Liu, Q., & Zhan, H. (2016).
Evolution of the non-linear and unsteady low Reynolds number laminar separation bubble around the airfoil with small angle of attack. 46th AIAA Fluid Dynamics Conference,Washington, D. C.
https://doi.org/10.2514/6.2016-4337
Brendel, M., & Mueller, T. J. (1988). Boundary-layer measurements on an airfoil at low Reynolds numbers. Journal of Aircraft, 25(7), 612–617. https://doi.org/10.2514/3.45631
Bruun, H. H. (1995). Hot-Wire Anemometry: Principles and Signal Analysis. Oxford University Press Inc., New York.
Carmichael, B. H. (1981). Low Reynolds number airfoil survey Vol. 1. NASA Contractor Report 165803.
Gerakopulos, R., Boutilier, M. S. H., & Yarusevych, S. (2010).
Aerodynamic characterization of a NACA 0018 airfoil at low Reynolds numbers. 40th AIAA Fluid Dynamics Conference, 1–13.
https://doi.org/10.2514/6.2010-4629
Gerontakos, P., & Lee, T. (2005). Near wake behind an airfoil with leading-edge flow control.
Journal of Aircraft,
42(2), 561–567.
https://doi.org/10.2514/1.9778
Hu, H., & Yang, Z. (2008). An experimental study of the laminar flow separation on a low-Reynolds-number airfoil.
Journal of Fluids Engineering, Transactions of the ASME,
130(5), 0511011–05110111.
https://doi.org/10.1115/1.2907416
Hu, H., Yang, Z., & Igarashi, H. (2007). Aerodynamic hysteresis of a low-Reynolds-number airfoil. Journal of Aircraft, 44(6), 2083-2086. https://doi.org/10.2514/1.32662
Huang, R. F., & Lee, H. W. (2000). Turbulence effect on frequency characteristics of unsteady motions in wake of wing.
AIAA Journal,
38(1), 87–94.
https://doi.org/10.2514/3.14382
Huang, R. F., & Lin, C. L. (1995). Vortex shedding and shear-layer instability of wing at low-Reynolds numbers.
AIAA Journal,
33(8), 1398–1403.
https://doi.org/10.2514/3.12561
Lienhard, J. H. (1966). Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders. Bulletin 300. Washington State University, Research Div., Bulletin 300.
Lyon, C. A., Broeren, A. P., Gigu`ere, P., Gopalarathnam, A., & Selig, M. S. (1997). Summary of Low-speed airfoil data, Vol 3. SoarTech Publications, Virginia Beach, Virginia.
Marchman, J. F., Abtahi, A. A., Sumantran, V., & Sun, Z. (1985).
Effects of aspect ratio on stall hysteresis for the Wortmann airfoil. 12th Atmospheric Flight Mechanics Conference, 44–49.
https://doi.org/10.2514/6.1985-1770
Marchman, J. F., Sumantran, V., & Schaefer, C. G. (1987). Acoustic and turbulence influences on stall hysteresis.
AIAA Journal,
25(1), 50–51.
https://doi.org/10.2514/3.9578
McGhee, R. J., & Walker, B. S. (1988). Experimental results for the eppler 387 airfoil at low reynolds numbers in the langley low- turbulence pressure tunnel. NASA TM 4062.
McMasters, J. H., & Henderson, M. L. (1979). Low-speed single-element airfoil synthesis. Technical Soaring, 6(2), 1–21.
Meng, X., Hu, H., Yan, X., Liu, F., & Luo, S. (2018). Lift improvements using duty-cycled plasma actuation at low Reynolds numbers.
Aerospace Science and Technology,
72, 123–133.
https://doi.org/10.1016/j.ast.2017.10.038
Mizoguchi, M., & Itoh, H. (2013). Effect of aspect ratio on aerodynamic characteristics at low Reynolds numbers.
AIAA Journal,
51(7), 1631–1639.
https://doi.org/10.2514/1.J051915
Mizoguchi, M., Kajikawa, Y., & Itoh, H. (2014). Static stall hysteresis of low-aspect-ratio wings. 32nd AIAA Applied Aerodynamics Conference. https://doi.org/10.2514/6.2014-2014
Mueller, T. J. (1985a). Low Reynolds Number Vehicles. Advisory Group for Aerospace Research and Development, AG-288.
Mueller, T. J. (1985b). The influence of laminar separation and transition on low Reynolds number airfoil hysteresis.
Journal of Aircraft,
22(9), 763–770.
https://doi.org/10.2514/3.45199
Mueller, T. J. (1999). Aerodynamic measurements at low Reynolds numbers for fixed wing micro-air vehicles. RTO AVT/VKI Special Course on Development and Operation of UAVs for Military and Civil Applications, University of Notre Dame.
Mueller, T. J., & Batill, S. M. (1982). Experimental studies of the laminar separation bubble on a two-dimensional airfoil at low Reynolds numbers.
AIAA Journal,
20(4), 457–463.
https://doi.org/10.2514/6.1980-1440
Nelson, R. C. (1998). Flight stability and automatic control. 2nd Edition, McGraw Hill, New York.
O’Meara, M. M., & Mueller, T. J. (1987). Laminar separation bubble characteristics on an airfoil at low Reynolds number.
AIAA Journal,
25(8).
https://doi.org/10.2514/6.1986-1065
Okamoto, M., Yasuda, K., & Azuma, A. (1996). Aerodynamic characteristics of the wings and body of a dragonfly.
Journal of Experimental Biology,
199(2), 281–294.
https://doi.org/10.1242/jeb.199.2.281
Roshko, A. (1954a). On the development of turbulent wakes from vortex streets. NACA-TR-1191.
Roshko, A. (1954b). On the drag and shedding frequency of two-dimensional bluff bodies. NACA-TN-3169.
Schmitz, F. W. (1967). Aerodynamics of the model airplane. Part-1. Airfoil Measurements. RSIC-721-PT-1.
Selig, M. S., Donovan, J. F., & Fraser, D. B. (1989). Airfoils at low speeds. Soartect 8, SoarTech Publications, 1504 North Horseshoe Circle Virginia Beach, Virginia.
Selig, M. S., Guglielmo, J. J., Broern, A. P., & Giguere, P. (1996a).
Experiments on airfoils at low Reynolds numbers. 34th Aerospace Sciences Meeting and Exhibit.
https://doi.org/10.2514/6.1996-62
Selig, M. S., Lyon, C. A., Giguere, P., Ninham, C. P., & Guglielmo, J. J. (1996b). Summary of low-speed airfoil data, Vol 2. SoarTech Publications, Virginia Beach.
Siram, O., Kumar, R., Saha, U. K., & Sahoo, N. (2022). Wind tunnel probe into an array of small-scale horizontal-axis wind turbines operating at low tip speed ratio conditions.
Journal of Energy Resources Technology, Transactions of the ASME,
144(9), 1–13.
https://doi.org/10.1115/1.4053579
Torres, G. E., & Mueller, T. J. (2004). Low-aspect-ratio wing aerodynamics at low Reynolds numbers.
AIAA Journal,
42(5), 865–873.
https://doi.org/10.2514/1.439
Van Treuren, K. W. (2015). Small-scale wind turbine testing in wind tunnels under low Reynolds number conditions.
Journal of Energy Resources Technology, Transactions of the ASME,
137(5), 1–11.
https://doi.org/10.1115/1.4030617
Wang, S., Zhou, Y., Alam, M. M., & Yang, H. (2014). Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers.
Physics of Fluids,
26(11).
https://doi.org/10.1063/1.4901969
Winslow, J., Otsuka, H., Govindarajan, B., & Chopra, I. (2018). Basic understanding of airfoil characteristics at low Reynolds numbers (10
4–10
5).
Journal of Aircraft,
55(3), 1050–1061.
https://doi.org/10.2514/1.C034415
Yang, Y., Li, C., Pröbsting, S., Liu, X., Liu, Y., & Arcondoulis, E. J. G. (2023). Hysteresis effect on airfoil stall noise and flow field. Physics of Fluids, 35(9). https://doi.org/10.1063/5.0160288
Yarusevych, S., & Boutilier, M. S. H. (2011). Vortex shedding of an airfoil at low Reynolds numbers.
AIAA Journal,
49(10), 2221–2227.
https://doi.org/10.2514/1.J051028
Yarusevych, S., Sullivan, P. E., & Kawall, J. G. (2006). Coherent structures in an airfoil boundary layer and wake at low Reynolds numbers.
Physics of Fluids,
18(4).
https://doi.org/10.1063/1.2187069
Yarusevych, S., Sullivan, P. E., & Kawall, J. G. (2009). On vortex shedding from an airfoil in low-Reynolds-number flows.
Journal of Fluid Mechanics,
632, 245–271.
https://doi.org/10.1017/S0022112009007058