Numerical Study of the Effect of Corona Discharge on Upward Wake Flow in the Horizontal Axis Wind Turbine Farm

Document Type : Regular Article

Authors

1 Kish International Campus, University of Tehran, Tehran, Iran

2 Faculty, Tarbiat Modares University, Tehran, Iran

3 Faculty of Engineering and Applied science, university of Regina, Saskatchewan, Canada

4 Sogang University, Seoul, South Korea

Abstract

Many countries worldwide are showing a growing interest in renewable energy sources, with wind energy being a particularly appealing option for generating mechanical energy. Researchers have explored different techniques for controlling the flow of air, including passive, active, and semi-active methods. In wind farms, the wake flow behind a turbine can be impacted by the flow from other turbines, and to address this issue, plasma-based corona discharge actuators are being considered as one of the most effective methods for reducing fluid flow separation on wind turbine blades. This study employs 2D and 3D numerical simulations to examine the use of corona discharge-based plasma actuators on the leading edge of tandem wind turbines within a wind farm. The study investigates how actuator voltage and frequency affect aerodynamic parameters such as lift, drag coefficients, and efficiency. The study incorporates the use of the Q-criterion to analyze vortex behavior and its interaction with the axial wind turbine body. Fluid flow modeling is conducted using the OPENFOAM software. The findings demonstrate that an escalation in both voltage and frequency of the corona discharge results in a decrease in the Q-criterion, attributed to the heightened ionic flow that diminishes the separation zone. Furthermore, reducing the distance between electrodes also aids in diminishing the Q-criterion values. Additionally, the study reveals that integrating corona plasma at the leading edge of wind turbine blades amplified power generation by more than 3.8%. The corona plasma actuator employed in the study had electrodes spaced 3 mm apart, operated at a voltage of 17 KV, and ran at a frequency of 13 kHz.

Keywords

Main Subjects


Abdolahipour, S., Mani, M., & Shams Taleghani, A. (2022). Pressure improvement on a supercritical high-lift wing using simple and modulated pulse jet vortex generator. Flow, Turbulence and Combustion, 109(1), 65-100. https://doi.org/10.1007/s10494-022-00327-9
Abdolahipour, S., Mani, M., & Taleghani, A. S. (2021). Parametric study of a frequency-modulated pulse jet by measurements of flow characteristics. Physica Scripta, 96(12), 125012. https://doi.org/10.1088/1402-4896/ac2bdf
Abdollahzadeh, M., Pascoa, J. C., & Oliveira, P. J. (2014a). Modified split-potential model for modeling the effect of DBD plasma actuators in high altitude flow control. Current Applied Physics, 8(14), 1160-1170. https://doi.org/10.1016/j.cap.2014.05.016
Abdollahzadeh, M., Páscoa, J. C., & Oliveira, P. J. (2014b). Two-dimensional numerical modeling of interaction of micro-shock wave generated by nanosecond plasma actuators and transonic flow. Journal of Computational and Applied Mathematics, 270, 401-416. https://doi.org/10.1016/j.cam.2013.12.030
Abdollahzadeh, M., Pascoa, J. C., & Oliveira, P. J. (2018). Comparison of DBD plasma actuators flow control authority in different modes of actuation. Aerospace Science and Technology, 78, 183-196. https://doi.org/10.1016/j.ast.2018.04.013
Abed ZahmatkeshPasand, S., Ghaemi Osgouie, S. K., Karimian Aliabadi, S., & Moshfeghi, M. (2023). Numerical study of the effect of weather parameters on corona discharge performance in a horizontal axis wind turbine. International Journal of Nonlinear Analysis and Applications, 14(12), 187-196 https://doi.org/10.22075/ijnaa.2022.29450.4170
Belabes, B., & Paraschivoiu, M. (2023). CFD modeling of vertical-axis wind turbine wake interaction. Transactions of the Canadian Society for Mechanical Engineering, 47, 449-458 https://doi.org/10.1139/tcsme-2022-0149
Benard, N., & Moreau, E. (2014). Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Experiments in Fluids, 11(55), 1-43. https://doi.org/10.1007/s00348-014-1846-x
Benmoussa, A., & Páscoa, J. C. (2023). Enhancement of a cycloidal self-pitch vertical axis wind turbine performance through DBD plasma actuators at low tip speed ratio. International Journal of Thermo- fluids, 17, 100258. https://doi.org/10.1016/j.ijft.2022.100258
Blaabjerg, F., Chen, Z., Teodorescu, R., & Iov, F. (2006). Power electronics in wind turbine systems. 2006 CES/IEEE 5th International Power Electronics and Motion Control Conference (Vol. 1, pp. 1-11). IEEE. https://doi.org/10.1109/IPEMC.2006.4777946
Chen, C., Wang, L., & Niu, M. (2023). Research on the application of improved NSGA-II in the structure design of wind turbine blade spar cap. Frontiers in Energy Research, 11, 1160423. https://doi.org/10.3389/fenrg.2023.1160423
De Giorgi, M. G., Motta, V., Suma, A., & Lafori, A. (2021). Comparison of different plasma actuation strategies for aeroelastic control on a linear compressor cascade. Aerospace Science and Technology, 117, 106902. https://doi.org/10.1016/j.dib.2021.107584
Durscher, R., & Roy, S. (2012). Evaluation of thrust measurement techniques for dielectric barrier discharge actuators. Experiments in Fluids, 4(53), 1165-1176. https://doi.org/10.1007/s00348-012-1349-6
Ebrahimi, A., & Hajipour, M. (2018). Flow separation control over an airfoil using dual excitation of DBD plasma actuators. Aerospace Science and Technology, 79, 658-668. https://doi.org/10.1016/j.ast.2018.06.019
Ebrahimi, A., Hajipour, M., & Ghamkhar, K. (2018). Experimental study of stall control over an airfoil with dual excitation of separated shear layers. Aerospace Science and Technology, 82, 402-411. https://doi.org/10.1016/j.ast.2018.09.027
Ekonomou, L., Lazarou, S., Chatzarakis, G. E., & Vita, V. (2012). Estimation of wind turbines optimal number and produced power in a wind farm using an artificial neural network model. Simulation Modelling Practice and Theory, 21(1), 21-25. https://doi.org/10.1016/j.simpat.2011.09.009
El Kasmi, A., & Masson, C. (2008). An extended k–ε model for turbulent flow through horizontal-axis wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 96(1), 103-122. https://doi.org/10.1016/j.jweia.2007.03.007
Enloe, C. L., McLaughlin, T. E., VanDyken, R. D., Kachner, K. D., Jumper, E. J., & Corke, T. C. (2004). Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology. AIAA Journal, 3(42), 589-594. https://doi.org/10.2514/1.3884
Fadaei, M., Davari, A., Sabetghadam, F., & Soltani, M. R. (2020). Investigation of single dielectric barrier discharge plasma actuator effect on separation control of a critical section of wind turbine blade. Modares Mechanical Engineering, 9(20), 2289-2302. http://dorl.net/dor/20.1001.1.10275940.1399.20.9.4.1
Guerra‐Garcia, C., Nguyen, N. C., Mouratidis, T., & Martinez‐Sanchez, M. (2020). Corona discharge in wind for electrically isolated electrodes. Journal of Geophysical Research: Atmospheres, 125(16), e2020JD032908. https://doi.org/10.1029/2020JD032908
Gulski, E., Anders, G. J., Jongen, R. A., Parciak, J., Siemiński, J., Piesowicz, E., & Irska, I. (2021). Discussion of electrical and thermal aspects of offshore wind farms’ power cables reliability. Renewable and Sustainable Energy Reviews, 151, 111580. https://doi.org/10.1016/j.rser.2021.111580
Hodgson, E. L., Grinderslev, C., Meyer Forsting, A. R., Troldborg, N., Sørensen, N. N., Sørensen, J. N., & Andersen, S. J. (2022). Validation of aeroelastic actuator line for wind turbine modelling in complex flows. Frontiers in Energy Research, 10, 864645. https://doi.org/10.3389/fenrg.2022.864645
Ibrahim, I. H., & Skote, M. (2011). Boundary condition modifications of the suzen-huang plasma actuator model. International Journal of Flow Control, 3. https://doi.org/10.1260/1756-8250.3.2-3.111
Kaviani, H. R., & Moshfeghi, M. (2023). Multi-megawatt horizontal axis wind turbine blade optimization based on PSO method. Aerospace, 10(2), 158. https://doi.org/10.3390/aerospace10020158
Liu, Y., Liu, S., Zhang, L., Cao, F., & Wang, L. (2021). Optimization of the yaw control error of wind turbine. Frontiers in Energy Research, 9, 626681. https://doi.org/10.3389/fenrg.2021.626681
Maas, O. (2023). Large-eddy simulation of a 15 GW wind farm: Flow effects, energy budgets and comparison with wake models. Frontiers in Mechanical Engineering, 9, 1108180. https://doi.org/10.3389/fmech.2023.1108180
Mirzaei, M., Taleghani, A. S., & Shadaram, A. (2012). Experimental study of vortex shedding control using plasma actuator. Applied Mechanics and Materials, 186, 75-86. https://doi.org/10.4028/www.scientific.net/AMM.186.75
Mohammadi, M., & Taleghani, A. S. (2014). Active flow control by dielectric barrier discharge to increase stall angle of a NACA0012 airfoil. Arabian Journal for Science and Engineering, 39, 2363-2370. https://doi.org/10.1007/s13369-013-0772-1
Nazari, A., Jafari, M., Rezaei, N., Taghizadeh-Hesary, F., & Taghizadeh-Hesary, F. (2021). Jet fans in the underground car parking areas and virus transmission. Physics of fluids, 33(1), 013603. https://doi.org/10.1063/5.0033557
Nazari, A., Wang, C., He, R., Taghizadeh-Hesary, F., & Hong, J. (2023). Numerical investigation of airborne infection risk in an elevator cabin under different ventilation designs. Physics of Fluids, 35(6). https://doi.org/10.1063/5.0152878
Oehme, F., Gleichauf, D., Balaresque, N., Sorg, M., & Fischer, A. (2022). Thermographic detection and localization of unsteady flow separation on rotor blades of wind turbines. Frontiers in Energy Research, 10, 1043065. https://doi.org/10.3389/fenrg.2022.1043065
Omidi, J., & Mazaheri, K. (2017). Improving the performance of a numerical model to simulate the EHD interaction effect induced by dielectric barrier discharge. International Journal of Heat and Fluid Flow, 67(5), 79-94. http://dx.doi.org/10.1016/j.ijheatfluidflow.2017.07.008
Qu, J., Zeng, M., Zhang, D., Yang, D., Wu, X., Ren, Q., & Zhang, J. (2021). A review on recent advances and challenges of ionic wind produced by corona discharges with practical applications. Journal of Physics D: Applied Physics, 55(15), 153002. https://doi.org/10.1088/1361-6463/ac3e2c
Qu, L., Wang, Y., Liu, G., Liao, M., Cai, H., Zhang, T., Deng, Y. & Wen, X. (2019). Simulation study on positive corona discharge of receptors on rotating wind turbine blade tips under thundercloud electric fields. Energies, 12(24), 4696. https://doi.org/10.3390/en12244696
Ramesh Kumar, K., & Selvaraj, M. (2023a). Investigations on integrated funnel, fan and diffuser augmented unique wind turbine to enhance the wind speed. Journal of Applied Fluid Mechanics, 16(3), 575-589. https://www.jafmonline.net/article_2166.html
Ramesh Kumar, K., & Selvaraj, M. (2023b). Novel deep learning model for predicting wind velocity and power estimation in advanced INVELOX wind turbines. Journal of Applied Fluid Mechanics, 16(6), 1256-1268. https://www.jafmonline.net/article_2221.html
Roth, J. R. (2003). Aerodynamic flow acceleration using paraelectric and peristaltic electrohydrodynamic effects of a one atmosphere uniform glow discharge plasma. Physics of Plasmas, 5(10), 2117-2126. https://doi.org/10.1063/1.1564823
Salmasi, A., Shadaram, A., & Taleghani, A. S. (2013). Effect of plasma actuator placement on the airfoil efficiency at post stall angles of attack. IEEE Transactions on Plasma Science, 41(10), 3079-3085. https://doi.org/10.1109/TPS.2013.2280612
Sanderse, B., Van der Pijl, S. P., & Koren, B. (2011). Review of computational fluid dynamics for wind turbine wake aerodynamics. Wind energy, 14(7), 799-819. https://doi.org/10.1002/we.458
Shams Taleghani, A., Shadaram, A., Mirzaei, M., & Abdolahipour, S. (2018). Parametric study of a plasma actuator at unsteady actuation by measurements of the induced flow velocity for flow control. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 1-13. https://doi.org/10.1007/s40430-018-1120-x
Shams Taleghani. A., Shadaram, A., & Mirzaei, M. (2012). Effects of duty cycles of the plasma actuators on improvement of pressure distribution above a NLF0414 airfoil. IEEE Transactions on Plasma Science, 40(5), 1434-1440. https://doi.org/10.1109/TPS.2012.2187683
Sheikholeslam Noori, S. M., Shams Taleghani, S. A., & Taeibi, M. (2020a). Phenomenological investigation of drop manipulation using surface acoustic waves. Microgravity Science and Technology, 32, 1147-1158. https://doi.org/10.1007/s12217-020-09839-3
Sheikholeslam Noori, S. M., Shams Taleghani, S. A., & Taeibi, M. (2021). Surface acoustic waves as control actuator for drop removal from solid surface. Fluid Dynamics Research, 53(4), 045503. https://doi.org/10.1088/1873-7005/ac12af
Sheikholeslam Noori, S. M., Taeibi, M., & Shams Taleghani, S. A. (2020b). Effects of contact angle hysteresis on drop manipulation using surface acoustic waves. Theoretical and Computational Fluid Dynamics, 34, 145-162. https://doi.org/10.1007/s00162-020-00516-0
Sheikholeslam Noori, S. M., Taeibi, M., & Shams Taleghani, S. A. (2020c). Numerical analyses of droplet motion over a flat plate due to surface acoustic waves. Microgravity Science and Technology, 32, 647-660. https://doi.org/10.1007/s12217-020-09784-1
Sinner, M., Petrović, V., Stockhouse, D., Langidis, A., Pusch, M., Kühn, M., & Pao, L. Y. (2023). Insensitivity to propagation timing in a preview-enabled wind turbine control experiment. Frontiers in Mechanical Engineering, 9, 1145305. https://doi.org/10.3389/fmech.2023.1145305
Suzen, Y. B., & Huang, P. G. (2005). Numerical simulation of unsteady wake/blade interactions in low-pressure turbine flows using an intermittency transport equation, Journal of Turbomachinery, 127(3), 431-444. 431-444. https://doi.org/10.1115/1.1860375
Taeibi, M., Shams Taleghani, S. A., Sheikholeslam Noori, S. M., & Ahmadi, G. (2022). Computational simulation of water removal from a flat plate, using surface acoustic waves. Wave Motion, 111, 102867. https://doi.org/10.1016/j.wavemoti.2021.102867
Thomas, F. O., Corke, T. C., Iqbal, M., Kozlov, A., & Schatzman, D. (2009). Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control. AIAA Journal, 9(47), 2169-2178. https://doi.org/10.2514/1.41588
Wang, J., Cai, Y. X., Li, X. H., Shi, Y. F., Bao, Y. C., Wang, J., & Shi, Y. X. (2018). Ionic wind development in corona discharge for LED cooling. IEEE Transactions on Plasma Science, 46(5), 1821-1830. https://doi.org/10.1109/TPS.2018.2816820
Yang, J., & Zhang, W. (2023). Forced response analysis of the rotor blade rows with the ROM-based aeroelastic model. Aerospace Science and Technology, 139, 108366. https://doi.org/10.1016/j.ast.2023.108366
Yu, W., Li, Q., Zhao, J., & Siew, W. H. (2022). Numerical simulation of the lightning leader development and upward leader initiation for rotating wind turbine. Machines, 10(2), 115. https://doi.org/10.3390/machines10020115
Zhang, Y. N., Wang, X. Y., Zhang, Y. N., & Liu, C. (2019). Comparisons and analyses of vortex identification between Omega method and Q criterion. Journal of Hydrodynamics, 31, 224-230. https://doi.org/10.1007/s42241-019-0025-1
Zheng, Y., Hu, C., Sheng, P., & Zhang, X. (2013). Design of timing synchronization software on EAST-NBI. Plasma Science and Technology, 15(12), 1237. https://doi.org/10.1088/1009-0630/15/12/14