CFD Analysis of Straightener Designs on Overall Performance of the Axial Flow Blood Pump

Document Type : Regular Article

Authors

1 Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004, India

2 School of Computing and Engineering, University of Huddersfield, Huddersfield, U.K.

10.47176/jafm.18.2.2889

Abstract

Ventricular assist devices (VADs) have emerged as an effective clinical tool for offering crucial aid to patients suffering with heart failure. To achieve optimal performance that matches a healthy ventricle, precise design and a thorough understanding of hydraulic and clinical factors are crucial. This research paper presents a comprehensive analysis using computational fluid dynamics (CFD) software ANSYS Fluent at different range of rotational speed and flow rate to examine the performance of an axial blood pump with three different straightener designs: conical, cylindrical, and paraboloid. The primary objective is to assess the impact of these straightener designs on the overall performance of the axial blood pump. Initially, the base axial pump employed conical straightener designs, which were subsequently modified to paraboloid and cylindrical shapes to evaluate their performance. Consistently, the results demonstrated that the paraboloid design outperformed the other designs. Specifically, the axial blood pump equipped with a paraboloid straightener exhibited an increased pressure head and lower intensity of turbulent kinetic energy compared to the other two designs. Additionally, the wall shear stress in the impeller region was lower in the paraboloid design. By employing CFD tool, this study provides valuable insights into the performance of different straightener designs for axial blood pumps. The findings highlight the superiority of the paraboloid design in terms of pressure head and wall shear stress reduction. These results contribute to enhancing the effectiveness and efficiency of left ventricular assist devices (LVADs), ultimately benefiting patients with heart failure.

Keywords

Main Subjects


Al-Azawy, M. G., Turan, A., & Revell, A. (2016). Assessment of turbulence models for pulsatile flow inside a heart pump. Computer Methods in Biomechanics and Biomedical Engineering, 19(3), 271–285. https://doi.org/10.1080/10255842.2015.1015527
Bounouib, M., Benakrach, H., Es‐Sadek Zeriab, M., Taha‐Janan, M., & Maazouzi, W. (2020). Numerical study of a new ventricular assist device. Artificial Organs, 44(6), 604–610. https://doi.org/10.1111/aor.13635
Cheng, L., Tan, J., Yun, Z., Wang, S., & Yu, Z. (2021). Analysis of flow field and hemolysis index in axial flow blood pump by computational fluid dynamics–discrete element method. The International Journal of Artificial Organs, 44(1), 46–54. https://doi.org/10.1177/0391398820917145
Gao, X., Xu, Z., Chen, C., Hao, P., He, F., & Zhang, X. (2023). Full-scale numerical simulation of hemodynamics based on left ventricular assist device. Frontiers in Physiology, 14, 1192610. https://doi.org/10.3389/fphys.2023.1192610
Jou, S., Mendez, S. R., Feinman, J., Mitrani, L. R., Fuster, V., Mangiola, M., Moazami, N., & Gidea, C. (2024). Heart transplantation: Advances in expanding the donor pool and xenotransplantation. Nature Reviews Cardiology, 21(1), 25–36. https://doi.org/10.1038/s41569-023-00902-1
Kannojiya, V., Das, A. K., & Das, P. K. (2019). Proposal of hemodynamically improved design of an axial flow blood pump for LVAD. Medical & Biological Engineering & Computing, 1–18. https://doi.org/10.1007/s11517-019-02097-5
Mani, T., Yeldose, M., Mannamplackal, T. J., Joy, J., & Jacob, R. G. (2021). Axial ventricular assist devices: A review focused on magnetic levitation, speed control and packaging. Materials Today: Proceedings, 47, 5379–5385. https://doi.org/10.1016/j.matpr.2021.06.090
Nammakie, E., Niroomand-Oscuii, H., Koochaki, M., & Ghalichi, F. (2017). Computational fluid dynamics-based study of possibility of generating pulsatile blood flow via a continuous-flow VAD. Medical & Biological Engineering & Computing, 55(1), 167–178. https://doi.org/10.1007/s11517-016-1523-8
Noly, P. E., Pagani, F. D., Noiseux, N., Stulak, J. M., Khalpey, Z., Carrier, M., & Maltais, S. (2020). Continuous-flow left ventricular assist devices and valvular heart disease: A comprehensive review. Canadian Journal of Cardiology, 36(2), 244–260. https://doi.org/10.1016/j.cjca.2019.11.022
Peng, Y., Wu, Y., Tang, X., Liu, W., Chen, D., Gao, T., Xu, Y., & Zeng, Y. (2014). Numerical simulation and comparative analysis of flow field in axial blood pumps. Computer Methods in Biomechanics and Biomedical Engineering, 17(7), 723–727. https://doi.org/10.1080/10255842.2012.715156
Qi, J., Zhou, Y., Wang, D., & Zhong, L. (2012). Numerical analysis of an axial blood pump with different impeller blade heights. Journal of Mechanics in Medicine and Biology, 12(03), 1250045. https://doi.org/10.1142/S0219519411004629
Romanova, A. N., Pugovkin, A. A., Denisov, M. V., Ephimov, I. A., Gusev, D. V., Walter, M., Groth, T., Bockeria, O. L., Le, T. G., & Satyukova, A. S. (2022). Hemolytic performance in two generations of the sputnik left ventricular assist device: A combined numerical and experimental study. Journal of Functional Biomaterials, 13(1), 7. https://doi.org/10.3390/jfb13010007
Sallam, A. M., & Hwang, N. H. (1984). Human red blood cell hemolysis in a turbulent shear flow: Contribution of Reynolds shear stresses. Biorheology, 21(6), 783–797. https://doi.org/10.3233/BIR-1984-21605
Shukla, P. K., Mishra, R., & Tewari, R. P. (2023). Analysis of rotary ventricular assist devices using CFD technique—A review. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 237(3), 1036–1063. https://doi.org/10.1177/09544089221128366
Silva, D. P. F., Coelho, R. C. V., Pagonabarraga, I., Succi, S., Gama, M. M. T. da, & Araújo, N. A. M. (2024). Lattice boltzmann simulation of deformable fluid-filled bodies: progress and perspectives. Soft Matter, 20(11), 2419–2441. https://doi.org/10.1039/D3SM01648J
Song, X., Untaroiu, A., Wood, H. G., Allaire, P. E., Throckmorton, A. L., Day, S. W., & Olsen, D. B. (2004). Design and transient computational fluid dynamics study of a continuous axial flow ventricular assist device. ASAIO Journal, 50(3), 215–224. https://doi.org/10.1097/01.mat.0000124954.69612.83
Su, B., Chua, L. P., & Wang, X. (2012). Validation of an axial flow blood pump: Computational fluid dynamics results using particle image velocimetry: Validation of blood pump using particle image velocimetry. Artificial Organs, 36(4), 359–367. https://doi.org/10.1111/j.1525-1594.2011.01362.x
Thamsen, B., Blümel, B., Schaller, J., Paschereit, C. O., Affeld, K., Goubergrits, L., & Kertzscher, U. (2015). Numerical analysis of blood damage potential of the heartmate II and heartware HVAD rotary blood pumps: Blood damage potential of blood pumps. Artificial Organs, 39(8), 651–659. https://doi.org/10.1111/aor.12542
Tu, J., Xu, L., Li, F., & Dong, N. (2024). Developments and challenges in durable ventricular assist device technology: A comprehensive review with a focus on advancements in china. Journal of Cardiovascular Development and Disease, 11(1), 29. https://doi.org/10.3390/jcdd11010029
Untaroiu, A., Throckmorton, A. L., Patel, S. M., Wood, H. G., Allaire, P. E., & Olsen, D. B. (2005). Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance. Artificial Organs, 29(7), 581–591. https://doi.org/10.1111/j.1525-1594.2005.29095.x
Valledor, A. F., Rubinstein, G., Moeller, C. M., Lorenzatti, D., Rahman, S., Lee, C., Oren, D., Farrero, M., Sayer, G. T., & Uriel, N. (2024). Durable left ventricular assist devices as a bridge to transplantation in the old and the new world. The Journal of Heart and Lung Transplantation. https://www.sciencedirect.com/science/article/pii/S105324982400038X
Wang, S., Tan, J., & Yu, Z. (2019). Comparison and experimental validation of turbulence models for an axial flow blood pump. Journal of Mechanics in Medicine and Biology, 19(08), 1940063. https://doi.org/10.1142/S0219519419400633
Wiegmann, L., Boës, S., de Zélicourt, D., Thamsen, B., Schmid Daners, M., Meboldt, M., & Kurtcuoglu, V. (2018). Blood pump design variations and their influence on hydraulic performance and indicators of hemocompatibility. Annals of Biomedical Engineering, 46, 417–428. https://doi.org/10.1007/s10439-017-1951-0
Wiegmann, L., Thamsen, B., De Zélicourt, D., Granegger, M., Boës, S., Schmid Daners, M., Meboldt, M., & Kurtcuoglu, V. (2019). Fluid dynamics in the heartmate 3: influence of the artificial pulse feature and residual cardiac pulsation. Artificial Organs, 43(4), 363–376. https://doi.org/10.1111/aor.13346
Wu, T., Khir, A. W., Kütting, M., Du, X., Lin, H., Zhu, Y., & Hsu, P. L. (2020). A review of implantable pulsatile blood pumps: Engineering perspectives. The International Journal of Artificial Organs, 43(9), 559–569. https://doi.org/10.1177/0391398820902470
Xiang, W. J., Huo, J. D., Wu, W .T., & Wu, P. (2023). Influence of inlet boundary conditions on the prediction of flow field and hemolysis in blood pumps using large-eddy simulation. Bioengineering, 10(2), 2. https://doi.org/10.3390/bioengineering10020274
Yang, W., Peng, S., Xiao, W., Hu, Y., Wu, H., & Li, M. (2022). CFD-based flow channel optimization and performance prediction for a conical axial maglev blood pump. Sensors, 22(4), 1642. https://doi.org/10.3390/s22041642
Volume 18, Issue 2 - Serial Number 94
February 2025
Pages 304-316
  • Received: 07 June 2024
  • Revised: 10 September 2024
  • Accepted: 15 September 2024
  • Available online: 04 December 2024