Al-Azawy, M. G., Turan, A., & Revell, A. (2016). Assessment of turbulence models for pulsatile flow inside a heart pump.
Computer Methods in Biomechanics and Biomedical Engineering,
19(3), 271–285.
https://doi.org/10.1080/10255842.2015.1015527
Bounouib, M., Benakrach, H., Es‐Sadek Zeriab, M., Taha‐Janan, M., & Maazouzi, W. (2020). Numerical study of a new ventricular assist device.
Artificial Organs,
44(6), 604–610.
https://doi.org/10.1111/aor.13635
Cheng, L., Tan, J., Yun, Z., Wang, S., & Yu, Z. (2021). Analysis of flow field and hemolysis index in axial flow blood pump by computational fluid dynamics–discrete element method.
The International Journal of Artificial Organs,
44(1), 46–54.
https://doi.org/10.1177/0391398820917145
Gao, X., Xu, Z., Chen, C., Hao, P., He, F., & Zhang, X. (2023). Full-scale numerical simulation of hemodynamics based on left ventricular assist device.
Frontiers in Physiology,
14, 1192610.
https://doi.org/10.3389/fphys.2023.1192610
Jou, S., Mendez, S. R., Feinman, J., Mitrani, L. R., Fuster, V., Mangiola, M., Moazami, N., & Gidea, C. (2024). Heart transplantation: Advances in expanding the donor pool and xenotransplantation.
Nature Reviews Cardiology,
21(1), 25–36.
https://doi.org/10.1038/s41569-023-00902-1
Kannojiya, V., Das, A. K., & Das, P. K. (2019). Proposal of hemodynamically improved design of an axial flow blood pump for LVAD.
Medical & Biological Engineering & Computing, 1–18.
https://doi.org/10.1007/s11517-019-02097-5
Mani, T., Yeldose, M., Mannamplackal, T. J., Joy, J., & Jacob, R. G. (2021). Axial ventricular assist devices: A review focused on magnetic levitation, speed control and packaging.
Materials Today: Proceedings,
47, 5379–5385.
https://doi.org/10.1016/j.matpr.2021.06.090
Nammakie, E., Niroomand-Oscuii, H., Koochaki, M., & Ghalichi, F. (2017). Computational fluid dynamics-based study of possibility of generating pulsatile blood flow via a continuous-flow VAD.
Medical & Biological Engineering & Computing,
55(1), 167–178.
https://doi.org/10.1007/s11517-016-1523-8
Noly, P. E., Pagani, F. D., Noiseux, N., Stulak, J. M., Khalpey, Z., Carrier, M., & Maltais, S. (2020). Continuous-flow left ventricular assist devices and valvular heart disease: A comprehensive review.
Canadian Journal of Cardiology,
36(2), 244–260.
https://doi.org/10.1016/j.cjca.2019.11.022
Peng, Y., Wu, Y., Tang, X., Liu, W., Chen, D., Gao, T., Xu, Y., & Zeng, Y. (2014). Numerical simulation and comparative analysis of flow field in axial blood pumps.
Computer Methods in Biomechanics and Biomedical Engineering,
17(7), 723–727.
https://doi.org/10.1080/10255842.2012.715156
Qi, J., Zhou, Y., Wang, D., & Zhong, L. (2012). Numerical analysis of an axial blood pump with different impeller blade heights.
Journal of Mechanics in Medicine and Biology,
12(03), 1250045.
https://doi.org/10.1142/S0219519411004629
Romanova, A. N., Pugovkin, A. A., Denisov, M. V., Ephimov, I. A., Gusev, D. V., Walter, M., Groth, T., Bockeria, O. L., Le, T. G., & Satyukova, A. S. (2022). Hemolytic performance in two generations of the sputnik left ventricular assist device: A combined numerical and experimental study.
Journal of Functional Biomaterials,
13(1), 7.
https://doi.org/10.3390/jfb13010007
Sallam, A. M., & Hwang, N. H. (1984). Human red blood cell hemolysis in a turbulent shear flow: Contribution of Reynolds shear stresses.
Biorheology,
21(6), 783–797.
https://doi.org/10.3233/BIR-1984-21605
Shukla, P. K., Mishra, R., & Tewari, R. P. (2023). Analysis of rotary ventricular assist devices using CFD technique—A review.
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering,
237(3), 1036–1063.
https://doi.org/10.1177/09544089221128366
Silva, D. P. F., Coelho, R. C. V., Pagonabarraga, I., Succi, S., Gama, M. M. T. da, & Araújo, N. A. M. (2024). Lattice boltzmann simulation of deformable fluid-filled bodies: progress and perspectives.
Soft Matter,
20(11), 2419–2441.
https://doi.org/10.1039/D3SM01648J
Song, X., Untaroiu, A., Wood, H. G., Allaire, P. E., Throckmorton, A. L., Day, S. W., & Olsen, D. B. (2004). Design and transient computational fluid dynamics study of a continuous axial flow ventricular assist device.
ASAIO Journal,
50(3), 215–224.
https://doi.org/10.1097/01.mat.0000124954.69612.83
Su, B., Chua, L. P., & Wang, X. (2012). Validation of an axial flow blood pump: Computational fluid dynamics results using particle image velocimetry: Validation of blood pump using particle image velocimetry.
Artificial Organs,
36(4), 359–367.
https://doi.org/10.1111/j.1525-1594.2011.01362.x
Thamsen, B., Blümel, B., Schaller, J., Paschereit, C. O., Affeld, K., Goubergrits, L., & Kertzscher, U. (2015). Numerical analysis of blood damage potential of the heartmate II and heartware HVAD rotary blood pumps: Blood damage potential of blood pumps.
Artificial Organs,
39(8), 651–659.
https://doi.org/10.1111/aor.12542
Tu, J., Xu, L., Li, F., & Dong, N. (2024). Developments and challenges in durable ventricular assist device technology: A comprehensive review with a focus on advancements in china.
Journal of Cardiovascular Development and Disease,
11(1), 29.
https://doi.org/10.3390/jcdd11010029
Untaroiu, A., Throckmorton, A. L., Patel, S. M., Wood, H. G., Allaire, P. E., & Olsen, D. B. (2005). Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance.
Artificial Organs,
29(7), 581–591.
https://doi.org/10.1111/j.1525-1594.2005.29095.x
Valledor, A. F., Rubinstein, G., Moeller, C. M., Lorenzatti, D., Rahman, S., Lee, C., Oren, D., Farrero, M., Sayer, G. T., & Uriel, N. (2024). Durable left ventricular assist devices as a bridge to transplantation in the old and the new world.
The Journal of Heart and Lung Transplantation.
https://www.sciencedirect.com/science/article/pii/S105324982400038X
Wang, S., Tan, J., & Yu, Z. (2019). Comparison and experimental validation of turbulence models for an axial flow blood pump.
Journal of Mechanics in Medicine and Biology,
19(08), 1940063.
https://doi.org/10.1142/S0219519419400633
Wiegmann, L., Boës, S., de Zélicourt, D., Thamsen, B., Schmid Daners, M., Meboldt, M., & Kurtcuoglu, V. (2018). Blood pump design variations and their influence on hydraulic performance and indicators of hemocompatibility.
Annals of Biomedical Engineering,
46, 417–428.
https://doi.org/10.1007/s10439-017-1951-0
Wiegmann, L., Thamsen, B., De Zélicourt, D., Granegger, M., Boës, S., Schmid Daners, M., Meboldt, M., & Kurtcuoglu, V. (2019). Fluid dynamics in the heartmate 3: influence of the artificial pulse feature and residual cardiac pulsation.
Artificial Organs,
43(4), 363–376.
https://doi.org/10.1111/aor.13346
Wu, T., Khir, A. W., Kütting, M., Du, X., Lin, H., Zhu, Y., & Hsu, P. L. (2020). A review of implantable pulsatile blood pumps: Engineering perspectives.
The International Journal of Artificial Organs,
43(9), 559–569.
https://doi.org/10.1177/0391398820902470
Xiang, W. J., Huo, J. D., Wu, W .T., & Wu, P. (2023). Influence of inlet boundary conditions on the prediction of flow field and hemolysis in blood pumps using large-eddy simulation.
Bioengineering,
10(2), 2.
https://doi.org/10.3390/bioengineering10020274
Yang, W., Peng, S., Xiao, W., Hu, Y., Wu, H., & Li, M. (2022). CFD-based flow channel optimization and performance prediction for a conical axial maglev blood pump.
Sensors,
22(4), 1642.
https://doi.org/10.3390/s22041642