Feng, X., Liu, Y., & Wang, B. (2023). Tip Leakage flow structures and its influence on cavitation inception for a NACA0009 hydrofoil.
Journal of Fluids Engineering, 145(5), 0551203.
https://doi.org/10.1115/1.4056941
Habibnejad, D., Akbarzadeh, P., Salavatipour, A., & Gheshmipour, V. (2022). Cavitation reduction in the globe valve using oblique perforated cages. A numerical investigation.
Flow Measurement and Instrumentation, 83, 102110.
https://doi.org/10.1016/j.flowmeasinst.2021.102110
Hunt, J. C. R., Wray, A. A., & Moin, P.(1988). Eddies, streams, and convergence zones in turbulent flows. Center for Turbulence Research, Proceedings of the Summer Program, (1970), 193–208. Bibcode:1988stun.proc..193H
Kolmogorov, A. N. (1991). The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers.
Proceedings: Mathematical and Physical Sciences, 434(1890), 9-13.
https://doi.org/10.1098/rspa.1991.0075
Kolovos, K. G., Koukouvinis, P., Mcdavid, R. M., & Gavaises, M. (2021). Transient cavitation and friction-induced heating effects of diesel fuel during the needle valve early opening stages for discharge pressures up to 450 MPa.
Energies, 14(10), 2923.
https://doi.org/10.3390/EN14102923
Kozák, J., Rudolf, P., Hudec, M., Štefan, D., & Forman, M. (2018). Numerical and experimental investigation of the cavitating flow within venturi tube.
Journal of Fluids Engineering, 141(4), 041101.
https://doi.org/10.1080/10236210490258034
Le, A. D., Okajima, J., & Iga, Y. (2019a). Modification of energy equation for homogeneous cavitation simulation with thermodynamic effect.
Journal of Fluids Engineering, 141(8), 081102.
https://doi.org/10.1115/1.4042257
Li, J., Gao, Z., Wu, H., & Jin, Z. (2020). Numerical investigation of methodologies for cavitation suppression inside globe valves.
Applied Sciences, 10(16), 5541.
https://doi.org/10.3390/app10165541
Nicoud, F., Baggett, J. S., Moin, P., & Cabot, W. H. (2001). Large eddy simulation wall-modeling based on suboptimal control theory and linear stochastic estimation.
Physics of Fluids, 13, 2968-2984.
https://doi.org/10.1063/1.1389286
Schnerr, G. H., & Sauer. J. (2001). Physical and numerical modeling of unsteady cavitation dynamics. ICMF-2001: The 4th International Conference on Multiphase Flow, New Orleans, USA.
Sun, W., & Tan, L. (2020). Cavitation-Vortex-pressure fluctuation interaction in a centrifugal pump using bubble rotation modified cavitation model under partial load.
Journal of Fluids Engineering-transactions of the Asme, 142(5), 051206.
https://doi.org/10.1115/1.4045615
Tao, J., Lin, Z., Zhang, G., Su, J., & Zhu, Z. (2021). A numerical and experimental study of the time averaged and transient flow downstream of a butterfly valve.
Journal of Fluids Engineering, 144(5), 051202.
https://doi.org/10.1115/1.4052632
Wang, L., Ji, B., Cheng, H., Wang, J., & Long, X. (2020). One-dimensional/three-dimensional analysis of transient cavitating flow in a venturi tube with special emphasis on cavitation excited pressure fluctuation prediction.
Science China Technological Sciences, 63, 223-233.
https://doi.org/10.1007/s11431-019-9556-6
Wang, X., Zhang, J., Huang, Z., Wang, L., Li, W., & Lan, G. (2022). Large Eddy simulation on the cavitation flow and noise characteristics of a NACA0009 hydrofoil with different tip clearance sizes.
Journal of Fluids Engineering, 145(1), 011204.
https://doi.org/10.1115/1.4055542
Xue, R., Chen, L., Zhong, X.. Liu, X. F., Chen, S., & Hou, Y. (2019). Unsteady cavitation of liquid nitrogen flow in spray nozzles under fluctuating conditions.
Cryogenics, 97, 144-148.
https://doi.org/10.1016/j.cryogenics.2018.09.010
Yang, N., Okajima, J., & Iga, Y. (2023). Change in cavitation regime on NACA0015 hydrofoil by heating the hydrofoil surface.
Journal of Fluids Engineering, 145(7), 071201.
https://doi.org/10.1115/1.4057004
Yang, Y. Q. (1992). Valve Design Manual. Beijing Machinery Industry Press. ISBN:7111035097.
Yu, A., Zou, Z., Zhou, D., Zhen, Y., & Luo, X. (2020). Investigation of the correlation mechanism between cavitation rope behavior and pressure fluctuations in a hydraulic turbine.
Renewable Energy, 147, 1199-1208.
https://doi.org/10.1016/j.renene.2019.09.096
Yuan, C., Zhu, L., Liu, S., Zunling, D., & Li, H. (2022). Numerical study on the cavitating flow through poppet valves concerning the influence of flow instability on cavitation dynamics.
Journal of Mechanical Science and Technology, 36, 761-773.
https://doi.org/10.1007/s12206-022-0124-8
Zhang, G., Zhang, H. T., Wu, Z. Y., Wu X., Kim, H. D., & Lin, Z. (2024). Experimental studies of cavitation evolution through a butterfly valve at different regulation conditions.
Experiments in Fluids, 65, 4.
https://doi.org/10.1007/s00348-023-03743-3