Large Eddy Simulation of Swirl Topology Evolution in Strong Oxidant Jet Milling Force Field

Document Type : Regular Article

Authors

1 National Special Superfine Powder Engineering Research Center of China, Nanjing 210094, Jiangsu, China

2 Sino-France Engineering School, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China

3 School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China

4 School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China

Abstract

In this paper, Large Eddy Simulation (LES) is employed to investigate the evolution characteristics of a spiral jet mill. This study aims to provide a theoretical reference for the numerical simulation and design optimization of spiral jet mills. To evaluate the influence of grids on simulation accuracy, grid convergence index (GCI) analysis was carried out on three sets of non-structural grids with equal proportion refinement. The visualization results demonstrate that the feeding gas traction and jet impact attenuation contribute to momentum conversion from the edge to the central domain, facilitating the development of the central swirl. The cross-scale chamber structure makes the turbulent coherent structure in the swirl evolution tend to be complex and disordered. A large-scale annular swirl is formed by stacking and winding multiple strip vortices. By comparing with the steady-state solution calculated using the k-epsilon model, it is confirmed that the aerodynamic characteristics in the micronization chamber stabilize at 400 ms. At this time, the combined action of the radial and tangential velocity forms a spiral airflow trajectory.

Keywords

Main Subjects


Alzwayi, A. S., Paul, M. C., & Navarro-Martinez, S. (2014). Large eddy simulation of transition of free convection flow over an inclined upward facing heated plate. International Communications in Heat and Mass Transfer, 57, 330-340. http://doi.org/10.1016/j.icheatmasstransfer.2014.08.009
Bnà, S., Ponzini, R., Cestari, M., Cavazzoni, C., Cottini, C., & Benassi, A. (2020). Investigation of particle dynamics and classification mechanism in a spiral jet mill through computational fluid dynamics and discrete element methods. Powder Technology, 364, 746-773. http://doi.org/10.1016/j.powtec.2020.02.029
Boddupalli, N., Yadav, N. K., & Chandra, L. (2018). The unsteady flow features behind a heliostat in a narrow channel at a high Reynolds number: Experiment and Large Eddy Simulation. International Journal of Mechanical Sciences, 136, 424-438. http://doi.org/10.1016/j.ijmecsci.2017.12.048
Bojko, B. T., Gross, M. L., & Jackson, T. L. (2020). Investigating dimensional effects on predicting burning rates of heterogeneous solid propellants. AIAA Journal58(4), 1724-1732. http://doi.org/10.2514/1.J058631
Brosh, T., Kalman, H., Levy, A., Peyron, I., & Ricard, F. (2014). DEM-CFD simulation of particle comminution in jet-mill. Powder Technology, 257, 104-112. http://doi.org/10.1016/j.powtec.2014.02.043
Chen, K. X., Xue, X. C., Yu, Y. G., & Z. Ye, W. (2023). Microflame diffusion properties of AP/HTPB propellant under binder width effects. Journal of Mechanical Science and Technology, 37(2), 1037-1046. http://doi.org/10.1007/s12206-023-0142-1
Chen, X. H., Long, Y., Wang, Y. Z., Weng, S. L., & Luan, Y. J. (2021). Large eddy simulation of film cooling from cylindrical holes partially blocked by CaO-MgO-Al2O3-SiO2. International Communications in Heat and Mass Transfer, 129. http://doi.org/10.1016/j.icheatmasstransfer.2021.105754
Gross, M. L. & Beckstead, M. W. (2010). Diffusion flame calculations for composite propellants predicting particle-size effects. Combustion and Flame, 157(5), 864-873. http://doi.org/10.1016/j.combustflame.2009.09.004
Isert, S., Hedman, T. D., Lucht, R. P. & Son, S. F. (2016). Oxidizer coarse-to-fine ratio effect on microscale flame structure in a bimodal composite propellant. Combustion and Flame, 163, 406-413. http://doi.org/10.1016/j.combustflame.2015.10.015
Ishihara, T., Qian, G. W., & Qi, Y. H. (2020). Numerical study of turbulent flow fields in urban areas using modified k - ε model and large eddy simulation. Journal of Wind Engineering and Industrial Aerodynamics, 206. http://doi.org/10.1016/j.jweia.2020.104333
Jafari, A., Zamankhan, P., Mousavi, S. M., & Pietarinen, K. (2008). Modeling and CFD simulation of flow behavior and dispersivity through randomly packed bed reactors. Chemical Engineering Journal, 144(3), 476-482. http://doi.org/10.1016/j.cej.2008.07.033
Jiang, X. Y. (2019). Revisiting coherent structures in low-speed turbulent boundary layers. Applied Mathematics and Mechanics-English Edition, 40(2), 261-272. http://doi.org/10.1007/s10483-019-2445-8
Kareem, W. A. (2017). Anisotropic complex diffusion filtering for comparison of the vortex identification methods in homogeneous turbulence. International Journal of Mechanical Sciences, 134, 291-305. http://doi.org/10.1016/j.ijmecsci.2017.10.023
Kumar, T., & Jackson, T. L. (2021). Three-dimensional thermo-mechanical simulations of heterogeneous solid propellants. Combustion and Flame, 233. http://doi.org/10.1016/j.combustflame.2021.111590
Luczak, B., Müller, R., Kessel, C., Ulbricht, M., & Schultz, H. J. (2019). Visualization of flow conditions inside spiral jet mills with different nozzle numbers- Analysis of unloaded and loaded mills and correlation with grinding performance. Powder Technology, 342, 108-117. http://doi.org/10.1016/j.powtec.2018.09.078
Nagendra, K., Ingole, M. & Periyapatna, R. A. (2019). Experimental studies on low pressure deflagration limit of ammonium perchlorate with additives. Combustion and Flame, 207, 356-367. http://doi.org/10.1016/j.combustflame.2019.06.011
Najafiyazdi, M., Mongeau, L., & Nadarajah, S. (2023). Large eddy simulation on unstructured grids using explicit differential filtering: A case study of Taylor-Green vortex. Journal of Computational Physics, 476. http://doi.org/10.1016/j.jcp.2022.111833
Patil, R. H. (2019). Fluid flow and heat transfer analogy for laminar and turbulent flow inside spiral tubes. International Journal of Thermal Sciences, 139, 362-375. http://doi.org/10.1016/j.ijthermalsci.2019.01.036
Rajeswari, M. S. R., Azizli, K. A. M., Hashim, S. F. S., Abdullah, M. K., Mujeebu, M. A., & Abdullah, M. Z. (2011). CFD simulation and experimental analysis of flow dynamics and grinding performance of opposed fluidized bed air jet mill. International Journal of Mineral Processing, 98(1-2), 94-105. http://doi.org/10.1016/j.minpro.2010.10.012
Richardson, L. F. (1911). The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philosophical Transactions of the Royal Society of London, 210, 307-357. http://doi.org/10.2307/90994
Roache, P. J. (1997). Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 29(1), 123-160. https://doi.org/10.1146/annurev.fluid.29.1.123
Rodnianski, V., Krakauer, N., Darwesh, K., Levy, A., Kalman, H., Peyron, I., & Ricard, F. (2013). Aerodynamic classification in a spiral jet mill. Powder Technology, 243, 110-119. http://doi.org/10.1016/j.powtec.2013.03.018
Sabia, C., Casalini, T., Cornolti, L., Spaggiari, M., Frigerio, G., Martinoli, L., Martinoli, A., Buffo, A., Marchisio, D. L., & Barbato, M. C. (2022). A novel uncoupled quasi-3D Euler-Euler model to study the spiral jet mill micronization of pharmaceutical substances at process scale: model development and validation. Powder Technology, 405. http://doi.org/10.1016/j.powtec.2022.117573
Sabia, C., Frigerio, G., Casalini, T., Cornolti, L., Martinoli, L., Buffo, A., Marchisio, D. L., & Barbato, M. C. (2021). A detailed CFD analysis of flow patterns and single-phase velocity variations in spiral jet mills affected by caking phenomena. Chemical Engineering Research & Design, 174, 234-253. http://doi.org/10.1016/j.cherd.2021.07.031
Scott, L., Borissova, A., Burns, A., & Ghadiri, M. (2021a). Analysis of hold-up and grinding pressure in a spiral jet mill using CFD-DEM. The European Physical Journal Conferences, 249, 12004. http://doi.org/10.1051/epjconf/202124912004
Scott, L., Borissova, A., Burns, A., & Ghadiri, M. (2021b). Influence of holdup on gas and particle flow patterns in a spiral jet mill. Powder Technology, 377, 233-243. http://doi.org/10.1016/j.powtec.2020.08.099
Scott, L., Borissova, A., Burns, A., & Ghadiri, M. (2021c). Effect of grinding nozzles pressure on particle and fluid flow patterns in a spiral jet mill. Powder Technology, 394, 439-447. http://doi.org/10.1016/j.powtec.2021.07.090
Severac, E., Poncet, S., Serre, E., & Chauve, M. P. (2007). Large eddy simulation and measurements of turbulent enclosed rotor-stator flows. Physics of Fluids, 19(8). http://doi.org/10.1063/1.2759530
Shen, W. J., & Wang, S. F. (2022). Large eddy simulation of turbulent flow and heat transfer in a turbine disc cavity with impellers. International Communications in Heat and Mass Transfer, 139. http://doi.org/10.1016/j.icheatmasstransfer.2022.106463
Silvester, S. A., Lowndes, I. S., Kingman, S. W., & Arroussi, A. (2007). Improved dust capture methods for crushing plant. Applied Mathematical Modelling, 31(2), 311-331. http://doi.org/10.1016/j.apm.2005.11.005
Tanaka, M., & Yanase, S. (2008). The structure and dynamics of coherent vortex tubes in the zero-absolute-vorticity state. Journal of Turbulence, 9(44), 1-32. http://doi.org/10.1080/14685240802562038
Versteeg, H., & Malalasekera, W. (1995). An introduction to computational fluid dynamics: The Finite volume method. 2nd edition. PEARSON Prentice Hall.
Wang, M. Y., Lu, X. G., Yang, C. W., Zhao, S. F., & Zhang, Y. F. (2023). Control of separated flow transition over a highly loaded compressor blade via dynamic surface deformation. International Journal of Mechanical Sciences, 241. http://doi.org/10.1016/j.ijmecsci.2022.107980
Wu, X. H., & Squires, K. D. (2000). Prediction and investigation of the turbulent flow over a rotating disk. Journal of Fluid Mechanics, 418, 231-264. http://doi.org/10.1017/s0022112000001117
Wu, Y. J., Yu, S. F., & Zuo, L. (2019). Large eddy simulation analysis of the heat transfer enhancement using self-oscillating fluidic oscillators. International Journal of Heat and Mass Transfer, 131, 463-471. http://doi.org/10.1016/j.ijheatmasstransfer.2018.11.070
Xue, X. C., Yu, Y. G., & Zhang, Q. (2013). Study on expansion characteristic of twin combustion gas jets in five-stage cylindrical stepped-wall observation chamber. Flow Turbulence and Combustion, 91(1), 139-155. http://doi.org/10.1007/s10494-013-9461-0
Xue, X. C., Yu, Y. G., & Zhang, Q. (2015). Study on the influences of interaction behaviors between multiple combustion-gas jets on expansion characteristics of Taylor cavities. Acta Mechanica Sinica, 31(5), 720-731. http://doi.org/10.1007/s10409-015-0421-x