Effect of Height on the Supersonic Flow over a Blunt Vertical Fin

Document Type : Regular Article

Authors

1 Department of Aerospace Engineering, Graphic Era (Deemed to be University), Dehradun-248002, India

2 Department of Aerospace Engineering, MIT Art, Design and Technology University, Pune-412201, India

3 Department of Space Engineering and Rocketry, Birla Institute of Technology, Mesra, Ranchi- 835215, India

Abstract

Understanding how protrusions, such as fins attached to flat or streamlined bodies, affect aerodynamics, especially in high-speed contexts, is vital for aerospace applications. These protrusions significantly influence overall aerodynamics and require a comprehensive understanding for accurate analysis and prediction of aerodynamic performance. This understanding is particularly critical in supersonic flight, where even minor aerodynamic disturbances can impact vehicle stability and efficiency. Therefore, a thorough understanding of protrusion-induced flow phenomena is essential for advancing aerospace engineering and improving supersonic vehicle performance and safety. The present paper focuses on the complex supersonic flow over a vertical fin, using a combination of experimental and computational methods. The study aims to understand how variations in fin height influence the behavior of the Lambda shock and any resulting changes in shock length. Specifically, the paper investigates different fin height-to-diameter (H/D) ratios ranging from 0.5 to 1.5 in steps of 0.25. To achieve this, both experimental testing in a supersonic wind tunnel and numerical simulations using the commercial CFD tool ANSYS-FLUENT are employed. Through this dual approach, the paper seeks insights into the characteristics of the Lambda shock and its effects on key aerodynamic parameters, such as shock strength and drag coefficient. By thoroughly investigating these aspects, the paper contributes to a deeper understanding of the complex flow phenomena associated with supersonic flow over vertical fins, potentially guiding the design and optimization of aerospace vehicles. The outcomes indicate that a fin height of 12 mm (H/D=1.0) provides the best balance in terms of pressure distribution, Lambda shock length, and drag coefficient, making it the optimal choice for enhancing aerodynamic stability and performance in supersonic conditions.

Keywords

Main Subjects


Ablaev, A. R., Dovgal, A. V., Grek, G. R., Katäsonov, M. M., & Kozlov, V. V. (2000). Experimental investigation of localized disturbances in a separation bubble. Proceedings of the International Conference on the Methods of Aerophysical Research (Part 1). https://apps.dtic.mil/sti/pdfs/ADA382160.pdf#page=7
Berry, S. A., Horvath, T. J., DiFulvio, M., Glass, C., & Merski, N. R. (1999). X-34 experimental aeroheating at Mach 6 and 10. Journal of Spacecraft and Rockets, 36(2), 273–279. https://doi.org/10.2514/2.3447
Berry, S. A., Horvath, T. J., Hollis, B. R., Thompson, R. A., & Hamilton II, H. H. (2001). X-33 hypersonic boundary layer transition. Journal of Spacecrafts and Rockets, 38(5). https://doi.org/10.2514/2.3748
Dolling, D. S., & Bogdonoff, S. M. (1979). Investigation of three-dimensional shock wave turbulent boundary layer interaction: An exploratory study of blunt fin-induced flows. AIAA Journal, 55(2), 133–140. https://doi.org/10.2514/1.J055283
Dolling, D. S., & Bogdonoff, S. M. (1980). Experimental study of three-dimensional shock wave turbulent boundary layer interaction: Scaling of sharp and blunt fin-induced flowfields. Defence Technical Research Center, Naval Surface Weapons Center, White Oak Laboratory. ADA086875.  https://apps.dtic.mil/sti/pdfs/ADA086875.pdf
Dolling, D. S., & Bogdonoff, S. M. (1982). An experimental investigation of the unsteady behavior of blunt fin-induced shock wave turbulent boundary layer interactions. Proceedings of the 14th Fluid and Plasma Dynamics Conference. https://doi.org/10.2514/6.1981-1287
Dolling, D. S., & Brusniak, L. (1993). Flowfield dynamics in blunt fin-induced shock wave/turbulent boundary layer interactions (NASA Grant NAG3-1023). https://ntrs.nasa.gov/api/citations/19940023299/downloads/19940023299.pdf
Dolling, D. S., Cosad, C. D., & Bogdonoff, S. M. (1977). Three-dimensional shock wave turbulent boundary layer interactions: A preliminary analysis of blunted fin-induced flows. Naval Surface Weapons Center. ADA046317. https://apps.dtic.mil/sti/pdfs/ADA046317.pdf
Fox, J. S., O’Byrne, S., Houwing, A. F. P., Papinniemi, A., Danehy, P. M., & Mudford, N. R. (2012). Fluorescence visualization of the hypersonic flow establishment over a blunt fin. AIAA Journal, 39(7), 1254–1261. https://doi.org/10.2514/2.1451
Guo, S., Xu, J., Qin, Q., & Gu, R. (2016). Fluid–thermal interaction investigation of spiked blunt bodies at hypersonic flight condition. Journal of Spacecraft and Rockets, 53(4), 705–714. https://doi.org/10.2514/1.A33370
Hale, J. T. (2014). Interaction between a conical shock wave and a plane compressible turbulent boundary layer at Mach 2.05 [Thesis, University of Illinois at Urbana-Champaign]. Retrieved from https://hdl.handle.net/2142/72992
Hollis, B. R., Horvath, T. J., Berry, S. A., Hamilton II, H. H., & Alter, S. J. (2001). X-33 computational aeroheating predictions and comparisons with experimental data. Journal of Spacecraft and Rockets, 34(5), 702–710. https://doi.org/10.2514/2.3751
Horvath, T. J., Berry, S. A., Hollis, B. R., Liechty, D. S., Hamilton II, H. H., & Mersk, N. R. (2001). X-33 experimental aeroheating at mach 6 using phosphor thermography. Journal of Spacecrafts and Rockets, 38(5). https://doi.org/10.2514/2.3748
Hung, C. M., & Buning, P. G. (1985). Simulation of blunt-fin-induced shock-wave and turbulent boundary-layer interaction. Journal of Fluid Mechanics, 154(1), 163–185. https://doi.org/10.1017/S0022112085001471
Knight, D. D., & Badekas, D. (1992). Quasiconical flowfield structure of the three-dimensional single fin interaction. AIAA Journal, 30(12), 2902–2904. https://doi.org/10.2514/3.48972
Kolesnik, E. V., & Smirnov, E. M. (2021). Supersonic laminar flow past a blunt fin: Duality of the numerical solution. Technical Physics, 66(6), 741–748. https://doi.org/10.1134/S1063784221050133
Kolesnik, E. V., & Smirnov, E. M. (2023). Duality of the stream pattern of supersonic viscous gas flow past a blunt-fin junction: The effect of a low sweep angle. Fluid Dynamics, 58(1), 18–28. https://doi.org/10.1134/S0015462822601887
Kolesnik, E. V., & Smirnov, E. M. (2024). Dual numerical solutions for a supersonic laminar flow past a plate and a blunt-fin body junction. AIP Conference Proceedings, 2351, 040030. https://doi.org/10.1063/5.0052221
Kolesnik, E., Smirnov, E., & Babic, E. (2023). Dual numerical solution for 3D supersonic laminar flow past a blunt-fin junction: Change in temperature ratio as a method of flow control. Fluids, 8(5), 149. https://doi.org/10.3390/fluids8050149
Mortazavi, M., & Knight, D. (2017). Shock wave laminar boundary layer interaction at a hypersonic flow over a blunt fin-plate junction. Proceedings of the 55th American Institute of Aeronautics and Astronautics Aerospace Sciences Meeting (Paper No. 0536). https://doi.org/10.2514/6.2017-0536
Narayan, A., Narayanan, S., & Kumar, R. (2017). Hypersonic flow past nose cones of different geometries: A comparative study. Simulation: Transactions of the Society for Modeling and Simulation International, 24(8), 675–686. https://doi.org/10.1177/0037549717733051
Ngoh, H., & Poggie, J. (2022). Forced separation unsteadiness in a supersonic blunt fin flow. Physical Review Fluids, 7, 093903. https://doi.org/10.1103/PhysRevFluids.7.093903
Poggie, J., & Smits, A. J. (1997). Wavelet analysis of wall-pressure fluctuations in a supersonic blunt-fin flow. AIAA Journal, 35(10), 1641–1647. https://doi.org/10.2514/2.18
Sedney, R., & Kitchens Jr, C. W. (1975). The structure of three-dimensional separated flows in obstacle-boundary layer interactions. USA Ballistic Research Laboratories. Retrieved from https://apps.dtic.mil/sti/pdfs/ADA011254.pdf
Song, J. W., Yu, M. S., & Cho, H. H. (2007). Heat transfer near sharp and blunt fins protruded in a supersonic flow. In Proceedings of the 39th AIAA Thermophysics Conference. https://doi.org/10.2514/6.2007-4151
Sydney, R., & Kitchens, C. W. Jr. (1977). Separation ahead of protuberances in supersonic turbulent boundary layers. USA Ballistic Research Laboratory. https://doi.org/10.2514/3.60658
Viswanath, P. R. (1988). Shock-wave-turbulent-boundary-layer interaction and its control: A survey of recent developments. Indian Academy of Sciences, 12(1 & 2), 45–104. https://link.springer.com/article/10.1007/BF02745660#citeas
Wang, S. F., Ren, Z. Y., & Wang, Y. (1998). Effects of Mach number on turbulent separation behaviours induced by blunt fin. Experiments in Fluids, 25(4), 347–351. https://doi.org/10.1007/s003480050239
Weng, Y., Li, Q., Tan, G., Su, W., & You, Y. (2024). Numerical investigations on interactions between 2D/3D conical shock wave and axisymmetric boundary layer at Mach 2.2. Aerospace Science and Technology, 144(3), Article 108769. https://doi.org/10.1016/j.ast.2023.108769
Xiao, F., Li, Z., Zhang, Z., Zhu, Y., & Yang, J. (2018). Hypersonic shock wave interactions on a V-shaped blunt leading edge. AIAA Journal, 56(1), 220–230. https://doi.org/10.2514/1.J055915