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ABSTRACT 

Understanding separated flow dynamics is crucial for implementing effective 

flow control techniques. These techniques help mitigate adverse effects on 

vehicle performance and environmental pollution. This research aims to 

improve flow control strategies by predicting separated flow dynamics solely 

through wall pressure measurements using artificial intelligence and numerical 

data. Initially, we identify numerical models that accurately replicate separated 

flow dynamics. Notably, the Detached Eddy Simulation (DES) model strongly 

agrees with experimental data, particularly in the turbulent regime at Reh= 

89100, downstream of backward facing steps (BFS). Subsequently we 

conducted a correlational analysis that revealed a significant relationship 

between various wall pressure points and the velocity field, leading to the 

adoption of deep learning techniques such as Recurrent Neural Networks with 

Long Short-Term Memory (LSTM). These neural networks, tailored for time-

dependent data, demonstrate high accuracy of low MSE of 13.48% using ten 

wall pressure points in predicting velocity magnitude contour over (BFS). To 

enhance predictions, Proper Orthogonal Decomposition (POD) is utilized to 

reduce system complexity while retaining essential dynamics, resulting in a 

lower MSE of 5.07%. Additionally, we identify the ideal wall pressure 

measurement region that accurately captures the entire dynamic behavior, 

achieving an acceptable MSE of 23.48% for predicting low order vorticity, with 

only three wall pressure points. This research aids in developing efficient flow 

control strategies with limited pressure data and offers valuable insights for 

closed-loop flow control applications. 
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1. INTRODUCTION 

 When an object is placed in a fluid flow, the fluid 

adheres to the surface of the body, but under certain 

conditions, it can detach from the wall, resulting in a 

phenomenon called flow separation. This is due to a 

positive pressure gradient or a geometric rupture of the 

wall, and it strongly affects the object's aerodynamic 

performance by increasing drag force and reducing lift in 

airplanes. Flow separation is a source of unsteadiness that 

can engender acoustic pollution and vibrations in the 

structure. Considering the deleterious impacts of this 

phenomenon, it is necessary to devise effective flow 

control techniques to ameliorate these effects. However, 

the successful implementation of such techniques 

necessitates a deep comprehension of the flow 

characteristics and the determination of the key 

parameters using advanced methods for achieving real 

time effective controls. In real-world applications, 

particularly in the design of intelligent flow control 

systems, we require dynamic information about the flow 

before applying control techniques such as synthetic jets. 

In practical scenarios, it is often not feasible to install 

sophisticated equipment to detect flow dynamics in real 

time. Instead, wall-mounted pressure sensors can be used 

to predict the velocity field. This approach is practical for 

real-time applications where rapid feedback is essential 

for effective flow control. This study's primary goal is to 

predict separated flow dynamics based on wall pressure 

measurements. Properly capturing and predicting flow 

separation is essential for optimizing closed-loop control 

strategies and enhancing the overall performance of 

aerodynamic systems. We worked extensively with 

numerical data. Before delving into this, it is essential to  
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NOMENCLATURE 

AR Aspect Ratio  Xr internal reattachment length 

ER Expansion Ratio  Lr external reattachment length 

Reh Reynolds number  f frequency 

δ jet diameter 
 

Ui(x,t) 
reconstructed field variable u at spatial 

location x and time t using the ith mode. 

u longitudinal velocity 
 

an(t) 
time coefficients associated with each 

mode 

v normal velocity 
 

Φ(x)n
(i) 

ith pod mode at spatial location x, with n 

modes in total. 

p pressure  ν kinematic viscosity 

ε turbulent dissipation rate  Lt turbulence length scale 

ρ   t time 

CDES 
a constant used in DES models to control the 

transition between RANS and LES regions 

 
Δmax 

largest spacing between grid points in the 

computational mesh 

St Strouhal number  ζ vorticity magnitude 

 

ensure the accuracy of our numerical data by validating it 

through experiments conducted under the same operating 

and geometrical conditions. Specifically, we focused on 

studying the flow over a (BFS) in a turbulent regime at 

Reh=89100. The BFS is the most preferred geometry in 

academic and industrial studies of the separated flow for 

its simplicity, (Duriez et al., n.d.) and it offers adequate 

conditions to create the separation by geometric rupture by 

studding it with an angle of 90°. (Antonio & Lacerda De 

Brederode, n.d.) focused on the aspect ratio for BFS 

(AR=the wide of the test section/high step). They 

conclude that an aspect ratio greater than ten results in a 

two-dimensional flow, as the effect of side walls becomes 

negligible. Also, Ötügen (1991) studied the influence of 

the expansion ratio (ER = high of test section / (high of 

test section - high step)) on organized structures. Sujar 

Garrido et al. (2014) assured that BFS depends on two 

parameters: flow conditions (boundary layer, turbulence) 

and geometric ones (ER and AR). Chovet et al. (2017) 

worked on BFS with an effective nominal two-

dimensional flow with an ER = 1.04 and AR = 24, 

resulting in negligible inference of the upper wall and side 

walls, and we conducted our research under the same 

conditions as (Chovet et al., 2017). And we assessed the 

DES model's accuracy in capturing turbulent flow 

dynamics, downstream of the BFS. After that, we 

conducted a correlative study involving ten (10) 

measurement points along both the vertical and horizontal 

walls of BFS. We explored the relationship between the 

wall pressure measurements and the velocity field in 

different components, in longitudinal (X) and normal (Y) 

directions. This correlation analysis helps us understand 

how pressure measurements correspond to the velocity 

field, a crucial aspect of our research. The next phase 

involves implementing a machine learning technique. In 

recent years, substantial advancements in deep learning 

techniques such as Ivakhnenko and Lapa (1965); 

Ivakhnenko (1971); Bengio (2009); Carrio et al. (2017); 

Khan and Yairi, (2018) have led to widespread adoption 

for information extraction across diverse data types. 

Various deep learning architectures have emerged. One 

prominent architectural is the recurrent neural network 

(RNN), as discussed by Robinson and Fallside (1987), 

Werbos (1988), Williams (1989), and Ranzato et al. 

(2014). The temporal challenges faced by Convolutional 

Neural Networks (CNN) and Deep Neural Networks 

(DNN) in handling sequential data like text, audio, and 

video, referencing studies by Fukushima (1980), LeCun et 

al. (1989), Weng et al. (1993), Rawat and Wang (2017), 

Guo et al. (2017), and Sharma and Singh (2017). In 

response to these challenges, (RNNs), particularly 

discrete-time RNNs, are emphasized for sequential data 

tasks. The distinctive cyclic connection in RNN 

architecture, enabling updates based on past and present 

data, is highlighted, referencing studies by Pearlmutter 

(1989), Brown et al. (2004), and Gallagher et al. (2005). 

Standard RNNs, including fully connected RNNs, Elman, 

(1990); Jordan, (1986); Chen and Soo (1996) and selective 

RNNs, Šter, (2013), are noted for their successes but 

acknowledged for struggling with long-term 

dependencies. To address this, Hochreiter and 

Schmidhuber’s seminal worked in 1997 on Long Short-

Term Memory (LSTM) networks is cited, emphasizing 

LSTM’s significance in handling long-term dependencies 

in sequential data. It is a new type of RNN architecture 

that is widely used for sequential and time series data 

analysis. Unlike traditional RNNs, LSTM networks are 

specifically designed to capture long-term dependencies 

and handle the vanishing gradient problem. LSTMs have 

a unique memory cell that allows them to retain and 

selectively forget information over time. This memory cell 

is controlled by three main components: an input gate, a 

forget gate, and an output gate. These gates regulate the 

flow of information, enabling LSTMs to capture relevant 

patterns and ignore irrelevant or noisy input. LSTMs have 

found success in various tasks, including natural language 

processing, speech recognition, sentiment analysis, and 

time series forecasting. Their ability to model long-term 

dependencies make them particularly effective for tasks 

that involve capturing context and understanding 

sequences of data. which is the case of the unsteady flow 

dataset. Fernández et al. (2007), He and Droppo (2016), 

Hsu et al. (2016), Sak et al. (2014), Qu et al. (2017), Altché 

and Fortelle (2017), Palangi et al. (2015) and Mallinar and 

Rosset (2018) demonstrate and underline the success of 

the LSTM method in machine learning with data 

depending on time (Yu et al., 2019). In addition, (Kumar 

& Selvaraj, 2023) has compared the efficiency of LSTM 

model and the combination of this model with Black 

Widow Optimization Algorithm (BOA) and Mayfly 
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Optimization Algorithm (MOA) which has done a great 

result in accuracy. In the domain of fluid dynamics, the 

application of artificial intelligence (AI) methods and 

prediction has been explored in various research studies. 

For instance, the research by Fadla et al. (2016) 

investigates the use of electrochemical sensors for real-

time stochastic reconstruction of large-scale dynamics in 

separated flows, focusing on accurately measuring wall 

shear stress to capture low-frequency flapping modes in 

transitional flow regimes at an inflow Reynolds number of 

1735. By integrating electrochemical sensors with Particle 

Image Velocimetry (PIV) and utilizing (POD) and Linear 

Stochastic Estimation (LSE), the study creates a low-order 

model that effectively reduces flow separation by 

resolving low-frequency dynamics. However, the 

methodology faces challenges in high Reynolds number 

regimes due to potential measurement errors and 

complexities in capturing high-frequency dynamics. In 

another study, (Talele et al., 2021) use Computational 

Fluid Dynamics (CFD) and Artificial Neural Networks 

(ANN) to predict flow patterns around square and 

rectangular bluff bodies at higher Reynolds numbers, 

ranging from 63651 to 636505. This research 

demonstrates the capability of ANN, driven by CFD data, 

to accurately predict vortex generation and flow 

separation behavior, validated through a neuron 

independency study (CFD ANN rectangular), despite the 

high accuracy, the effectiveness of ANN is highly 

dependent on the quality and quantity of training data, and 

extensive computational resources are required for model 

training and validation. Further extending the application 

of ANN, (Rajabi & Kavianpour, 2012) developed a 

Levenberg-Marquardt (LM) neural network to predict 

turbulent flow over a BFS using Direct Numerical 

Simulation (DNS) data. The study highlights the 

efficiency of ANN in capturing complex flow dynamics 

and achieving high accuracy in flow prediction across 

different Reynolds regimes (ANN). Additionally, (Singh 

et al., 2017) applied ANN for predicting turbulent 

separated flows over airfoils, improving the accuracy of 

lift, surface pressure, and flow separation predictions 

across various Reynolds numbers. (ANNs) are generally 

effective for various types of data, including static data 

and data that depends on time. However, their 

effectiveness in handling time-dependent data can be 

limited compared to specialized neural network 

architectures designed for temporal sequences. The 

Focused Time-Delay Neural Networks (FTDNN) 

approach by (Giannopoulos & Aider, 2020) demonstrates 

that a shallow neural network architecture, when 

combined with POD, can achieve high accuracy in 

predicting flow dynamics. The study emphasizes the 

importance of time-delay in the inputs to capture temporal 

dependencies effectively. The optimal configuration 

included 501 neurons in the hidden layer and a time-delay 

of 400 steps, resulting in a validation mean squared error 

(MSE) lower than 10% for all POD coefficients, however, 

the necessity of selecting appropriate time-delay and 

network configuration parameters can complicate the 

model development. As a result, significant advancements 

have been made in the field of flow dynamics prediction 

using artificial neural networks (ANNs). Various studies 

have demonstrated the potential of ANNs in predicting 

flow behavior. However, these methods often face 

limitations when dealing with large datasets and time-

dependent data. For instance, while ANNs can model 

complex patterns, their performance can degrade with 

increasing data size and temporal dependencies. Previous 

research has explored different methods to address these 

challenges. One such method is the (FTDNN) coupled 

with (POD), which helps in resolving temporal 

dependencies. However, this method poses a challenge in 

selecting the appropriate time delay, which can 

significantly affect the prediction accuracy. In this 

context, our study introduces the (LSTM) network, which 

is known for its efficiency in handling time-dependent 

data. LSTM networks have demonstrated superior 

performance in capturing temporal dynamics due to their 

memory capabilities. This makes them particularly 

suitable for applications involving large datasets with 

temporal dependencies, such as flow dynamics prediction. 

Despite its advantages, the LSTM approach may require 

substantial computational resources and a well-structured 

training dataset to achieve optimal performance. In this 

study we aim to create a model that can predict the 

velocity field based on the measured wall pressure, 

providing valuable insights into the flow behavior. 

Furthermore, we employ (POD) as a technique to reduce 

the complexity of the system while retaining the most 

significant dynamic information. This step simplifies the 

data and prepares it for a more efficient machine learning. 

Despite the progress in using neural network for flow 

prediction, there is a gap in leveraging the full potential of 

LSTM networks for this application. Our research aims to 

fill this gap by demonstrating the effectiveness of LSTM 

networks in predicting flow dynamics with high accuracy. 

The novelty of our approach lies in the integration of 

LSTM networks with POD to reduce system complexity 

while retaining essential dynamics. Additionally, we have 

conducted an investigation to find the best region based on 

three wall pressure measurements that can better predict 

the dynamics over a (BFS) and trained with reduced-order 

vorticity. We presented a comprehensive evaluation of the 

model's accuracy and efficiency, highlighting the potential 

of LSTM networks to improve flow control strategies. 

Achieving accurate vorticity predictions with limited data 

(wall pressure measurements) could be instrumental in 

implementing closed-loop control systems with limited 

pressure measurements, and it is a valuable technique for 

scientists and engineers who work in this field and are 

involved in developing flow control systems. 

2. NUMERICAL MODELING 

2.1 Hypotheses 

 Before conducting any numerical simulation, it’s 

essential to formulate our hypothesis, which serves as the 

foundation for our research to draw meaningful 

conclusions. As we are working on the same operating 

conditions as (Chovet et al., 2017) (experimental), we 

suppose that: 

• Two-dimensional flow (when the aspect ratio greater 

than ten (Antonio & Lacerda De Brederode, n.d.) the 

flow is predominantly two-dimensional, and the 

transversal dynamics become negligible, effectively 
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the effects of the side walls is minimized). In addition, 

our study aims to establish a closed-loop control 

system capable of predicting and managing the most 

significant flow dynamics. To achieve this, we 

focused on the longitudinal and normal dynamics 

where the most critical flow behaviors are observed 

in experiments. Consequently, we opted for two-

dimensional simulations, as the transversal dynamics 

are less significant in our case. 

• Walls are adiabatic. 

• Fluid is air with (density (kg/m3) =1.225 and dynamic 

viscosity (kg/ m s) = 1.7894.10–5). 

• Incompressible flow. 

• Isothermal flow (experimental work was done in fixed 

temperature). 

• Turbulent flow at (Reh = 89100) and (Reh = 31500 for 

comparing with experimental wall pressure 

coefficients). 

• Turbulent intensity equals 0.6% (same measured in 

experimental conditions). 

• Thickness of boundary measured at 0.2 h before BFS, 

𝛿/h = 0.5060 (as measured in experimental work, 

showing equivalent values at the same location). 

2.2 Simulation Domain 

 We conducted our simulation using the same 

geometrical and operating conditions, as those employed 

in the experiments at (Chovet et al., 2019),  we worked 

with the height step value, h = 0.083 m, as shown in Fig. 

1-a and Fig. 1-b. 

2.3 Meshing 

 In our case, the geometry is not complex, and we 

did not hesitate to choose the structured mesh for our 

study. In 2D, the elements are quadrilaterals as shown in 

Fig. 1-b, and it presents the following advantages: 

 

 
Fig. 1-a Computational Domain with Coordinates 

 

 
Fig. 1-b Visualization of Mesh within the 

Computational Domain 

- Economic in number of elements, it presents a lower 

number of cells than an equivalent unstructured mesh. 

- When the mean flow is aligned with the mesh, a 

structured mesh reduces the risk of numerical errors. 

 We refined the mesh near both the vertical and 

horizontal walls. This type of meshing is largely used in 

the literature for (BFS) as well as for vertical and 

horizontal walls, such as squares like the meshing over 

two inline square cylinders (Sohankar et al., 2019). To 

accurately capture the boundary layer, we implemented 

the 𝑦+ approach to achieve an appropriate wall resolution, 

targeting a value of y+=1 to ensure that the mesh resolves 

the viscous sublayer in all cases. Additionally, all meshes 

were generated by varying the cell-to-cell growth ratio as 

shown in Fig. 2-a at the BFS corner. 

 The choice of mesh size is crucial to balancing 

accuracy and computational efficiency. Therefore, we 

conducted a sensitivity analysis to determine the optimal 

mesh size for our simulations. We assessed the mesh 

quality using various criteria, including skewness, aspect 

ratio, and orthogonality. We achieved a high-quality mesh 

with smooth transitions between the different zones, 

ensuring accurate numerical predictions of the flow 

dynamics over the BFS.  In the Fig. 2-b, the plot shows 

how the viscous coefficient changes with the number of 

nodes used in the meshing. Initially, the viscous 

coefficient fluctuates significantly as the number of nodes 

increases, indicating a lack of convergence. At around 

580,000 nodes, the viscous coefficient stabilizes and 

shows minimal variation with further increases in the 

number of nodes. Indicating that the solution has reached 

a converged state where further refinement does not 

significantly affect the results. Figure 2-c, illustrates the 

wall shear stress downstream of BFS plotted against 𝑥/ℎ 

for various mesh resolutions. It offers insights into the 

internal and external reattachment lengths, with 

reattachment points identified by values approaching zero, 

indicating where the flow reattaches after separation. The 

dashed lines indicate experimental values for 𝑥/ℎ=0.71 (Xr 

in exp) and 𝑥/ℎ=5.37 (Lr in exp). As the mesh resolution 

increases, the curves converge, becoming closer to the 

experimental values. The meshes with more than 550000 

 

 
Fig. 2-a Examples of Analyzed Meshes 
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Fig. 2-b Meshing Independence study using viscous 

coefficient 

 

Fig. 2-c Meshing Independence study using wall shear 

stress 

 

nodes are particularly well-aligned and closely match the 

experimental values at both Xr and Lr. Consequently, 

selecting 580000 nodes offers a good balance between 

computational cost and accuracy, as this choice is 

informed by the stabilization of both the viscous 

coefficient and the convergence of wall shear stress 

values, making it the optimal mesh resolution for this 

study. 

2.4 Numerical Models 

 To perform simulations in our study, we used Ansys 

Fluent due to its versatility and wide range of available 

numerical models, with finite volume discretization, and 

the momentum equations were solved using the MUSCL 

third-order scheme, while the other equations were solved 

using second-order schemes. Additionally, residual values 

were set to 10-6 for better precision, ensuring higher 

accuracy in the numerical solutions. In the context of 2D 

unsteady isothermal flow, the governing equations consist 

of the continuity equation for mass conservation and the 

momentum equations. The continuity equation ensures 

that mass is conserved in the flow, and it can be expressed 

as: 

Continuity Equation (Mass Conservation) 

𝛛𝐮

𝛛𝐱
+

𝛛𝐯

𝛛𝐲
= 𝟎                                                                  (1) 

 The momentum equations, which describe the forces 

acting on the fluid, are essential for capturing the 

dynamics of the flow. 

Momentum Equations 

x-momentum Equation 

𝛛𝐮

𝛛𝐭
+ 𝐮

𝛛𝐮

𝛛𝐱
+ 𝐯

𝛛𝐮

𝛛𝐲
= −

𝟏

𝛒

𝛛𝐩

𝛛𝐱
+ 𝝂(

𝛛𝐮𝟐

𝛛𝐱𝟐 +
𝛛𝐮𝟐

𝛛𝐲𝟐 )                 (2) 

y-momentum Equation 

𝛛𝐯

𝛛𝐭
+ 𝐮

𝛛𝐯

𝛛𝐱
+ 𝐯

𝛛𝐯

𝛛𝐲
= −

𝟏

𝛒

𝛛𝐩

𝛛𝐲
+ 𝝂(

𝛛𝐯𝟐

𝛛𝐱𝟐 +
𝛛𝐯𝟐

𝛛𝐲𝟐 )                  (3) 

 Choosing the appropriate turbulence model is 

especially important, as turbulence plays a crucial role in 

many fluid flows. However, selecting a more complex 

model may not always lead to better results, as it may 

require more computational resources and time. Overall, a 

systematic approach that considers the physical 

phenomena being studied, and the available computational 

resources is necessary to select an adequate numerical 

model. Several researchers have investigated different 

turbulence models to reproduce the important flow 

features on BFS, observed in the experiments. Šarić et al. 

(2005) conducted a study on Large Eddy Simulation 

(LES), Detached Eddy Simulation (DES), and the 

Reynolds Stress Model (RSM). They concluded that while 

LES and DES are the most accurate, RSM also has 

positive aspects, particularly in handling complex three-

dimensional flows and capturing anisotropic turbulence 

effects. Also (Mehrez et al., 2010) has used LES model to 

show the influence of a periodic perturbation on BFS. 

(Luo, 2019) found that partially averaged Navier-Stokes 

(PANS) gives acceptable predictions in BFS but is less 

accurate than the DES model. Additionally, the study by 

(Probst et al., 2010) on separation behind the BFS showed 

that DES variants agree well with measured skin friction 

and velocity profiles when a sufficiently fine mesh is 

applied, unlike RSM. Almohammadi (2020) found that the 

Transition-SST model effectively captures the laminar-

turbulent transition, providing accurate predictions in flow 

separation scenarios. (Smirnov et al., 2018) concluded that 

the Improved Delayed Detached Eddy Simulation 

(IDDES) model offers significant improvements over 

traditional DES and RANS models, particularly in 

predicting heat transfer and reattachment lengths in BFS 

flows. Other models designed to include laminar-turbulent 

transition and separation, such as Gamma-Reynolds and 

RMS, also offer significant potential for accurately 

predicting flow characteristics in BFS scenarios. These 

models account for the transition between laminar and 

turbulent flow, providing more comprehensive results in 

certain conditions. These findings demonstrate the 

importance of selecting an appropriate turbulence model 

based on the flow characteristics and objectives of the 

simulation.  
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DES (Detached Eddy Simulation) 

DES is a hybrid turbulence model that combines the 

benefits of Reynolds-Averaged Navier-Stokes (RANS) 

and Large Eddy Simulation (LES) models. The DES 

model uses RANS equations in the near-wall regions and 

switches to LES equations in the outer regions, by a 

comparison of the turbulent length scale Lt with the grid 

spacing Δmax. The model selects the minimum of both and 

switches between RANS and LES mode by replacing ε in 

the k-equation by:  

𝜺 =
𝒌𝟑 𝟐⁄

𝑳𝒕
 →   𝜺 =

𝒌𝟑 𝟐⁄

𝒎𝒊𝒏(𝑪𝑫𝑬𝑺𝜟𝒎𝒂𝒙 ,𝑳𝒕)
                                   (4) 

 The modified equation ensures a smooth transition 

between the RANS and LES regions in hybrid turbulence 

models. In regions where the grid is fine, the LES 

approach dominates, while in coarser grid regions, the 

RANS approach is used. This allows for better prediction 

of both attached and separated flows, making it a popular 

choice for simulating complex flow phenomena. The DES 

model involves solving a modified set of Navier-Stokes 

equations, which account for the effects of turbulence on 

the flow.  

2.5 Proper Orthogonal Decomposition Technique 

 Proper Orthogonal Decomposition (POD) is a 

powerful technique used for analyzing and reducing the 

dimensionality of data. commonly applied in the field of 

fluid dynamics, and analyzing turbulent flows. The 

primary goal of POD is to extract the dominant coherent 

structures or modes from a given dataset. It decomposes 

the data into a set of orthogonal modes, which capture the 

major energy-containing structures in the flow. These 

modes are arranged in order of their significance, with the 

first mode representing the most energetic structure, 

followed by subsequent modes representing progressively 

less energetic structures. POD allows the representation of 

complex flow fields with a reduced number of modes. 

Modes are obtained by the function Φ(x) that has the 

largest mean square projection of u(x, t). The integral 

equation has a discrete set of solutions Φ(x) and n where 

n is the mode order of the orthogonal decomposition. The 

eigenfunction were orthonormal e.g. Φ(x)n, Φ(x)p = 𝜆np. 

Then the fluctuating velocity field can be decomposed as 

follow:  

𝒖𝒊(𝒙,𝒕) = ∑ 𝒂𝒏
𝒏𝒎
𝒊=𝟏 (𝒕)𝜱(𝒙)𝒏

(𝒊)
(𝒙), 𝒊 = 𝟏, … , 𝒏               (5) 

2.6 Numerical Modeling Results 

2.6.1 Flow Topology 

 The results using DES model at Reh =89100 from the 

simulation are in good agreement with the experimental 

data (EXP), in the external reattachment length (Lr), 

internal separation length (Xr) as presented in Table 1. 

 Figure 3 presents the contours of mean flow velocities. 

In Fig. 3-a, the X velocity contours show that BFS creates 

a recirculation zone downstream of the step, which is 

characterized by negative velocities. However, after the 

reattachment point, a new boundary layer forms, and the 

velocity becomes positive again, indicating the recovery 

of the flow. These negative velocities in the recirculation  

Table 1 Comparison between experimental and 

numerical reattachment length 

Models 

Results 
EXP DES mean values 

Lr /h 5.37 5.2870 

Xr/h 0.71 0.6820 

δ/h 0.53 0.5010 

 

 
Fig. 3-a Contour of longitudinal velocity 

 

 
Fig. 3-b Contour of normal velocity 

Fig. 3 Contours of mean flow velocities 

 
zone and subsequent recovery of the flow are common 

features. Observed in the flow past a BFS.  

 Also, in Fig. 3-b (Y velocity), we saw that after sudden 

expansion followed by a sudden contraction, which can 

induce separation and the formation of a recirculation zone 

downstream of the step. The negative normal velocity is 

observed in this recirculation zone, this causes a 

separation of the boundary layer and the formation of a 

shear layer at the edge of the step. This shear layer is 

susceptible to various types of instabilities, such as vortex 

shedding, and vortices. In unsteady flows past a BFS, the 

dynamics of the shear layer and the formation of vortices 

and the shear layer oscillation can be observed and deform 

over time due to the unsteadiness of the flow, which can 

be seen as fluctuations in the velocity vectors. The 

formation and shedding of vortices can also be seen. These 

vortices can interact with each other and with the walls of 

the channel, leading to the formation of a recirculation 

zone downstream of the step.  



S. Kouah et al. / JAFM, Vol. 18, No. 2, pp. 399-418, 2025.  

 

405 

 

Fig. 4 Wall pressure coefficient investigated in Reh = 

31500 after BFS x/h =0-15 (experiments (Chovet et 

al., 2019) and numerical results (mean values for DES 

model) 

 

Wall Pressure Coefficient 

 The coefficient of pressure is the most essential 

parameter in our study, it highlights the mean flow 

topology, we compared our results of wall coefficient 

pressure after BFS with the experimental results measured 

by (20) pressure sensor Kulite XCQ – 062 by Chovet et al. 

( 2019) at Reh = 31500, shown in Fig. 4, a low-pressure 

level was seen for both results, a zero value of Cp is in x/h 

≈ 4 for the experiment and near 3.5 for the DES model’s 

mean values, with a maximum value of Cp near to 0.25 

was for both results, after the external reattachment length 

equals 5.62, the pressure gradient becomes adverse as the 

expansion of the flow. The DES model effectively 

captures the overall trend and qualitative behavior of the 

flow, demonstrating its ability to detect depression and the 

relationship between wall dynamics and flow 

characteristics. The strong qualitative agreement between 

numerical and experimental results suggests that the 

model accurately represents the essential physics of the 

flow. 

2.6.2 Spectral Analysis 

Performing a spectral analysis quantifies instabilities 

and periodic phenomena, providing insights into the 

dynamic behavior of structures, vortices, and the 

separation bubble. This technique involves examining the 

frequency content of the flow field to identify the 

dominant frequencies and amplitudes of unsteady 

phenomena, characterizing their temporal and spatial 

features. The resulting data is valuable for identifying 

sources of unsteadiness and understanding the underlying 

flow dynamics. the best region to show the low-pressure 

fluctuations where the dynamic is dominated by both low 

and high frequencies is at x/Lr < 0.3 or exactly in x/h = 

1.5, under the shear layer, and we evaluated the wall 

pressure in this region. Our spectral analysis results  

 
Fig. 5 Non-dimensional power spectra of fluctuating 

wall pressure measured at x/h=1.5 for our current 

study at Reh = 89100 

 

presented in Fig. 5 indicates the presence of two distinct 

instabilities in the flow past the studied object.  

 The first instability, visible as peak marked with green 

cross in the plot, is characterized by a low Strouhal 

number (St = (f ∗ Lr)/U∞ ≈ 0.12) and corresponds to the 

flapping instability (oscillation of the shear layer). This 

instability is in agreement with previous studies reported 

in the literature by Chovet et al. (2019) and (Fadla et al., 

2019). The second instability, shown as a little 

accumulation of energy marked with blue cross in the plot, 

has a higher Strouhal number (St ≈ 1) and is associated 

with the formation and shedding of vortices, as reported in 

the literature by Chovet et al. (2019) and Fadla et al. 

(2019.). Our results are in excellent agreement with these 

previous studies. 

3. MACHINE LEARNING AND PREDICTION 

 In this part, we have selected a rectangular area (Fig. 

6) that includes the important zone containing the 

recirculation zone and the shear layer, which is crucial for 

our research, because they greatly affect how the flow 

behaves and the overall characteristics of the BFS. By 

focusing on these specific areas, we hope to better 

understand the complex dynamics and fundamental 

mechanisms of the phenomenon of separation flow. We 

have chosen a specific zone within the BFS. This zone 

spans from (x/h = 0) to (x/h = 9, 6385) along the x-axis 

and from (y/h = –1) to (y/h = 1.2048) along the y-axis. To 

analyze this zone effectively, we have created a mesh with 

1600 elements, forming a matrix of dimensions (80,20), to 

discretize and represent the flow fields. accurately within 

the selected zone, enabling us to conduct detailed 

investigations and gather valuable data for our research. 

We have selected multiple points (Fig. 7) along the wall to 

measure the wall pressure. We can accurately capture and 

analyze the variations in wall pressure along the surface 

(vertical and horizontal wall around the recirculation 

zone), by strategically choosing these locations, to show 

the interaction and relationship between wall pressure and 

the separated flow on BFS dynamics. 
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Fig.6 Chosen rectangular zone with mesh for study 

 

Fig. 7 Chosen ten points wall pressure for study 

 

3.1 Corelative Study Between Wall Pressure and 

Velocity Field 

 Before diving into machine learning analysis between 

wall pressure and velocity field, it is essential to conduct 

a correlation study and examine the relationship between 

the variables involved and determine if there is a linear 

association between them. This preliminary investigation 

allows us to understand the degree of dependency between 

the variables, by assessing the strength and direction of the 

relationship. This correlation analysis is a crucial step 

before moving to machine learning, as it assesses the 

feasibility of the learning process by identifying 

significant features and relationships within the variables. 

We conducted individual correlation studies between each 

point of wall pressure and the corresponding velocity 

fields (X-velocity and Y-velocity). This analysis was 

performed for all points of wall pressure along the surface, 

by examining the correlation between a specific pressure 

point and the velocity field. We repeated this process for 

each point of wall pressure, allowing us to understand how 

changes in pressure relate to variations in the X-velocity 

and Y-velocity throughout the entire dataset. Using 

Python programming and its libraries to perform a 

correlation analysis between wall pressure and velocity. 

Initially, we imported necessary libraries such as numpy 

and pandas to handle data processing. We load the wall 

pressure data as a vector from a file and loaded the 

velocity data and coordinates from multiple files. Using 

the pandas library, for each coordinate point, we 

calculated the correlation between the pressure vector and 

the velocity components. The correlation coefficient, 

ranging from 0 to 1, indicates the strength of the 

relationship. These results were then written to an output 

file, which enabled us to create a contour plot visualizing 

the correlation strength at each point. This visualization 

illustrates how velocity at various points relates to wall 

pressure, providing valuable insights into the flow 

dynamics and ensuring that the machine learning model is 

trained on the most relevant and influential data. In Fig. 8, 

which represents the correlation with the X-velocity, 

along the horizontal walls, a positive correlation is 

observed near all pressure points, while a negative 

correlation is observed above these points. Regarding the 

vertical walls, specific locations exhibit distinct 

correlation characteristics. At Point 1, located at the 

summit of the BFS, a positive correlation is prominent. 

However, at Point 2, the correlation with the velocity field 

is weak. At Point 3, positioned at the corner, there is a 

moderate positive and negative correlation, apparent 

across all velocity fields. Furthermore, Fig. 9 shows 

correlations with Y velocity on the horizontal wall, points 

are in positive correlation with zone above after and 

negative correlation in zone before, and zones of strong 

correlation are near the wall in correlation with the points 

after the recirculation zone, and correlation with vertical 

wall pressure is weaker than horizontal wall, in addition 

we can observe that points under the shear layer (point 4 

,point 5 point 6 and point 7) have the strongest correlation 

with both X and Y velocity. 

3.2 Methodology of Machine Learning Using LSTM 

NN Algorithm 

3.2.1 LSTM Key Concepts 

Memory Cell 

 The core element of an LSTM is the memory cell, 

which maintains information over time. It acts as a 

conveyor belt, passing along relevant information and 

selectively forgetting unnecessary information. 

Gates 

 LSTMs utilize three types of gates to control the flow 

of information within the memory cell. 

Cell State 

 The memory cell maintains the cell state, which 

carries information over time. The input gate and forget 

gate determine which information is added and forgotten, 

respectively, in the cell state. 

Hidden State 

 The hidden state is the output of the LSTM at a given 

time step. It is derived from the cell state and passes 

through the output gate to produce the final output. During 

training, the LSTM adjusts its internal parameters using 

backpropagation through time (BPTT) to minimize the 

error between predicted and actual outputs. This  

process enables the network to learn and capture complex  
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(a) correlation between u and P1    (b) correlation between u and P2 

 
 

(c) correlation between u and P3            (d) correlation between u and P4 

  
(e) correlation between u and P5            (f) correlation between u and P6 

  
(g) correlation between u and P7           (h) correlation between u and P8 

  
(i) correlation between u and P9         (j) correlation between u and P10 

Fig. 8 correlation between u and wall pressure points 

 

temporal patterns within sequential data. By leveraging 

the memory cell and gating mechanisms, LSTMs can 

effectively handle long-term dependencies, mitigate the 

vanishing problem. 

 These key concepts encapsulate the fundamental 

aspects of LSTMs and their mechanisms for processing 

sequential data. 

3.2.2 Structure of the LSTM Model 

 The LSTM model used in our study is structured as 

follows: 

Input Layer: Receives wall pressure data points as input 

extracted as time-dependent data. 

LSTM Layer: Captures temporal dependencies in the 

data. 

Dense Layers: Fully connected layers that transform the 

LSTM outputs into the desired format. 

Output Layer: Produces the predicted velocity field 

corresponding to the input wall pressure measurements. 
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(a) correlation between v and P1 (b) correlation between v and P2 

  
(c) correlation between v and P3 (d) correlation between v and P4 

  
(e) correlation between v and P5 (f) correlation between v and P6 

  
(g) correlation between v and P7 (h) correlation between v and P8 

  
(i)_correlation between v and P9 (j) correlation between v and P10 

Fig. 9 correlation between v and wall pressure points 

 

3.2.3 Machine Learning Process 

• Load the pressure and velocity data in PYTHON, from 

the specified paths. 

• Reshape and preprocess the data to prepare it for input 

into the LSTM network. This includes reshaping the 

pressure data to match the expected input shape of 

the LSTM and performing standard scaling on both 

the pressure and velocity data. 

• Build the LSTM model using the Sequential API of 

TensorFlow’s Keras. The model consists of LSTM 

layers followed by densely connected layers with 

various activation functions. 

• Compile the model by specifying the loss function 

(’mean squared error’) and optimizer (’adam’). 

• Define early stopping criteria to monitor the validation 

loss and stop training if the loss doesn’t improve 

after a certain number of epochs. 
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• Train the model on the input data and target output, 

using the "fit" function. The training data is split into 

training (80%) of dataset and validation sets (20%) 

of dataset, and the early stopping criteria are applied. 

• Evaluate the trained model on the test set using the 

"evaluate" function. 

• Save the trained model to a file. 

• Predict the output on the test set and calculate the mean 

squared error (MSE) between the predicted and 

actual values. 

• Plot the training and validation loss over the epochs 

using matplotlib library. 

3.2.4 Prediction Process 

 In the prediction phase, the saved model is loaded, and 

new input vectors (wall pressure) are provided. The 

trained model, which contains the coefficients, equations, 

and memories of the LSTM model, processes these inputs 

and generates the corresponding output matrices 

representing the velocity field. Here is a brief overview of 

the prediction process: 

1-Load the Saved Model: The trained LSTM model is 

loaded from the saved .h5 file. 

2-Load and Preprocess Pressure Data: New wall 

pressure data is loaded and preprocessed as required. 

3-Predict Velocity Field: The model uses the input 

pressure data to predict the velocity field. 

4-Save Predicted Data: The predicted velocity fields are 

saved to files for further analysis. 

3.2.5 Hyperparameters Used in the Neural Network 

 We employed several hyperparameters to optimize the 

performance of our LSTM neural network: 

 Learning Rate: Controlled by the Adam optimizer, 

which adaptively adjusts the learning rate during training 

to ensure efficient convergence. 

 Number of Layers and Neurons: The model includes 

one LSTM layer with 16 units, followed by four dense 

layers with 32, 128, 512, and 1600 units, respectively. This 

configuration was chosen to balance model complexity 

and performance. 

 Batch Size: Set to 32, which determines the number of 

samples processed before the model’s internal parameters 

are updated. 

 Epochs: Set to 1000, defining the number of complete 

passes through the training dataset. Early stopping was 

implemented to prevent overfitting, halting training when 

validation loss ceased to improve. 

 Activation Function: The ReLU (Rectified Linear 

Unit) activation function was applied to the dense layers, 

enabling the model to learn complex, non-linear 

relationships in the data by allowing for a broader range 

of outputs. 

 

4. RESULTS AND DISCUSSION 

4.1 Training Velocity Magnitude with Ten Points of 

Wall Pressure 

 Fig. 10 illustrates the workflow of a machine learning 

model that uses wall pressure data to predict velocity 

magnitude. The process begins with the collection of wall 

pressure measurements at ten (10) points. These 

measurements, along with corresponding velocity 

magnitude data, are used to train a (LSTM) (NN). Once 

trained, the model can predict the velocity magnitude 

using only the wall pressure points as input. The diagram 

effectively demonstrates the input-output relationship and 

the role of the machine learning model in transforming 

wall pressure data into meaningful velocity predictions. 

Training a model consisting of 3000 datasets has given 

promising results. The training process resulted in a 

minimal loss of 5.10%, showcasing the model’s ability to 

effectively learn from the provided data. Furthermore, 

during the validation phase, the model demonstrated a 

slightly higher loss of 8.48%, as shown in Fig. 11, which 

remains within acceptable limits. Also, when applied to 

predict instantaneous snapshots, of velocities, the model 

exhibited accurate predictions, successfully preserving the 

correct topology of the contours as demonstrated in Fig. 

12, the MSE is estimated to 13,486%, to be within 

acceptable values. Although there is a small difference in 

the actual velocity values, the overall topology remains 

accurate. The positions of shedding and vortex formations 

are correctly predicted, which is critical for our objective. 

Achieving higher precision would require a substantial 

amount of data and more powerful computational 

resources. These outcomes suggest that the trained model 

is robust and capable of capturing the underlying patterns 

within the data. 

 In Fig. 13, spectral analyses were conducted for both 

the original velocity data and the predicted normal 

velocity. Remarkably, the spectral plots exhibit striking 

 

 

Fig. 10 Machine learning model with velocity field 

and ten wall pressure points 
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Fig. 11 Training velocity magnitude with 10 points of 

wall pressure 

 

 
(a) Original velocity magnitude contour at t instant 

  
(b) Predicted velocity magnitude contour at t instant 

Fig. 12 Predicting velocity magnitude contour with 

ten points of wall pressure at same instant 

 

similarities, particularly in the peaks (the Strouhal number 

adjacent to 1 and at low frequencies 0.1). This quantitative 

agreement underscores the reliability of our predictions, 

providing strong confirmation of the presence of 

instabilities in both the original and predicted datasets. 

4.2 Training Reduced Order Velocity Field with Wall 

Pressure  

 After applying the (POD) method to our dataset, a 

notable observation emerged: Mode 1 stands out as the 

most energetically significant, a finding visually depicted 

in the associated histogram in Fig. 14. The cumulative plot 

(Fig. 15) further reinforces this insight, illustrating that the 

sum of all decompositions (modes) collectively accounts 

for 100% of the energy.  

 
(a) Non-dimensional power spectra of fluctuating normal 

original velocity measured at x/h=1.5 at Reh = 89100. 

 

 
(b) Non-dimensional power spectra of fluctuating normal 

predicted velocity measured at x/h=1.5 at Reh = 89100. 

Fig. 13 Non-dimensional power spectra of fluctuating 

for original and predicted normal velocity measured 

at x/h=1.5 at Reh = 89100 

 

 

Fig. 14 Histogram shows the percentage of energy for 

each mode 
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Fig. 15 Cumulative percentage of energy 

 

 In mode 1 contour, we observed a distinct oscillation 

in the shear layer, which is clearly visible in Fig. 16. We 

observed a bulb that narrows and expands, with 

oscillations reaching a minimum negative value between 

𝑥/ℎ=1.8 and 𝑥/ℎ=3.5. This dynamic is the most significant 

and important in the separated flow dynamics on BFS. 

Targeting control of this specific dynamic could yield 

valuable results, enhancing overall performance and 

reducing drag forces. 

 The quantification of this oscillation using spectral 

analysis revealed a frequency of approximately 5 

oscillations per second. Remarkably, this observed 

frequency closely corresponds to the Strouhal number of  

 

 

a) POD X velocity mode 1 at t1. 

 

b) POD X velocity mode 1 at t2. 

Fig. 16 Contours at different instant of reduced order 

at mode 1 of X velocity 

Fig. 17 Non-dimensional power spectra of fluctuating 

reduced order X Velocity (POD mode 1) measured at 

x/h=1.5 for our current study at Reh = 89100 

 

0.12, a frequency associated with flapping dynamics as 

reported in the existing literature. Consequently, our 

analysis suggests that the dominant dynamic behavior 

captured in POD mode 1, as shown in Fig. 17, is primarily 

representative of the flapping instability. 

 Figure 18 illustrates a machine learning model 

enhanced with (POD) for greater accuracy, designed to 

predict low order velocity using wall pressure data. 

Initially, wall pressure measurements and X velocity data 

are collected. The X velocity data undergoes POD, to 

reduce the dynamics dimensionality while preserving its 

most significant features. This step makes the data more 

manageable and improves the performance of the machine 

learning model. The reduced data and the wall pressure 

measurements are then used to train a (LSTM) (NN). Once 

trained, the model can predict the low order velocity using 

only the wall pressure points as input. 

 The training process resulted in a minimal loss of 

5.35%, and the validation loss was 9.08% as shown in Fig. 

19, which remains within acceptable limits. 

 

 

 

Fig. 18 Machine learning model with reduced order 

longitudinal velocity and ten wall pressure points 
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Fig. 19 Training pod with 10 points of wall pressure 

 Notably, the model exhibited accurate predictions, 

successfully preserving the correct topology of the 

reduced order of X velocity contours at different instants, 

as demonstrated in Fig. 20, the MSE is estimated to 

5,064%. Also, specter analysis for predicted reduced order 

X velocity showed a good agreement with the original one 

(Fig. 21). 

4.3 Study of the Best Region of Wall Pressure 

Measurement for Prediction 

 In this part, we use three points combinations of wall 

pressure that predict velocity with less mean squared error 

(MSE). We chose three points to see that the combination 

of different places (such as vertical and horizontal walls) 

of measurements is necessary to get maximum of 

information. 

1. Dataset Preparation: Collect the dataset that includes 

wall pressure measurements and corresponding 

velocity values. 

 

 

  
a) Original POD mode 1 at t1 b) Predicted POD mode 1 at t1 

  
c) Original POD mode 1 at t2 d) Predicted POD mode 1 at t2 

  
e) Original POD mode 1 at t3 f) Predicted POD mode 1 at t3 

  
g) Original POD mode 1 at t4 (h) Predicted POD mode 1 at t4 

Fig. 20 Predicting reduced order X velocity contours with ten points of wall pressure at different instants (t1, t2, 

t3, t4 stands for different instants of time flow) 
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Fig. 21 Non-dimensional power spectra of fluctuating 

predicted reduced order X Velocity POD mode 1 with 

ten points of wall pressure at Reh = 89100 

 
2. Feature Selection: Select the three points (by 

combining three from the ten points defined before) 

for predicting velocity based on wall pressure. 

3. Split the Dataset: Divide the dataset into training and 

testing sets. The training set will be used to train the 

prediction model. while the testing set will be used to 

evaluate its performance. 

4. Model Training: Use a regression algorithm to train a 

model based on the selected three points (features) 

and the corresponding velocity values in the training 

set. 

5. Model Evaluation: Evaluate the trained model’s 

performance using the testing set. Calculate the 

(MSE) between the predicted velocity values and the 

actual velocity values in the testing set. 

6. Iterate and Optimize: Repeat steps 2–5 with different 

combinations of three points to find the combination 

that yields the lowest MSE. using random search to 

explore different combinations efficiently. 

7. Select the Best Combination: Compare the MSE 

values obtained for different combinations and select 

the one with the lowest MSE as the best combination 

of three points for predicting velocity based on wall 

pressure. 

8. Validate the Model: Once selecting the best 

combination, and validate the model’s performance 

by applying it. 

9. By following these steps, you can systematically 

study the best three points combinations of wall 

pressure that tell us the best region to predict velocity 

with the least amount of error (MSE) and improve the 

accuracy of predictions. 

 Our comprehensive analysis has led us to a compelling 

conclusion: the points situated beneath the shear layer 

(4,5,6) as shown in Fig 22, emerge as the most favorable 

candidates for constructing combinations of three points 

that possess a remarkable capability to predict the true 

dynamics of the system. By focusing on these specific 

points, we are strategically targeting a region that exhibits 

a strong correlation with the underlying dynamic 

behavior. This region, characterized by its proximity to the 

shear layer, plays a pivotal role in shaping the flow 

patterns and influencing the overall system dynamics. The 

rationale behind selecting combinations of three points 

lies in the power of their collective information. 

Considering multiple points simultaneously, we can 

leverage the spatial relationships between them and 

capture a broader perspective of the system’s behavior. 

Each point contributes valuable insights into the local flow 

characteristics, and when combined, they offer a 

comprehensive representation of the complex interactions 

occurring within the system. We have established that 

these three points combinations exhibit a significantly 

lower (MSE) compared to alternative approaches. This 

reduction in error signifies the enhanced predictive 

accuracy, enabling us to make more reliable predictions. 

 The spectral analysis was done on the predicted  

lower-order x velocity (Fig. 23), utilizing the three most  

 

 
Fig. 22 MSE for all possible combinations of three 

points of wall pressure 

 

 

Fig. 23 Non-dimensional power spectra of fluctuating 

predicted reduced order X Velocity POD mode 1 

using three best wall pressure points measured at 

x/h=1.5 at Reh = 89100 
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Fig. 24 Machine learning model with reduced order 

vorticity and best three wall pressure points 

 
favorable wall pressure positions. It displayed a similar 

peak compared to the same analysis done on the original 

dynamics (Fig. 17) and the anticipated predicted dynamics 

using ten measurement points (Fig. 21). This peak 

represents the most significant dynamic in low 

frequencies, which is the flapping of shear layer and its 

prediction in real time is sufficient to establish flow 

control based on feedback information. 

4.4 Training Reduced Order Vorticity with Wall 

Pressure 

 Vorticity is a vital concept as it depends on all velocity 

components, as shown in equation 6, and is closely linked 

to wall pressure. (As shown above, both longitudinal and 

normal velocity are in relation to wall pressure). This 

relationship makes it a valuable tool for machine learning 

and flow prediction. Also, shear layer regions are visible 

through vorticity contours, which offer the ability to 

effectively control the flow by knowing the position of 

shear layers. 

𝜁 =  𝛻 ×  𝑉 =  (
𝜕v

𝜕𝑥
) −  (

𝜕u

𝜕𝑦
)                                    (6) 

 Figure 24 illustrates a machine learning model 

designed to predict low order vorticity using wall pressure 

data, with enhanced accuracy (POD). The process begins 

with the collection of X and Y velocity data, which 

undergoes POD to reduce dimensionality. This reduced 

data is then used to compute vorticity. Concurrently, wall 

pressure measurements at points P4, P5, and P6 are 

collected. These inputs are fed into a (LSTM) (NN), which 

is trained using only three wall pressure points. This 

limited number of measurement points makes the 

approach particularly useful in practical scenarios where 

wall pressure sensors are restricted. Once trained, the 

prediction model can utilize the three wall pressure points 

to predict low order vorticity. This method is valuable for 

real time applications in flow control. The training phase  

 

Fig. 25 Training reduced order vorticity magnitude 

with three best points of wall pressure 

 

resulted in a minimal loss of 7.33%, with a validation loss 

of 9.41% (presented in Fig. 25), both within acceptable 

limits. Importantly, the model demonstrated accurate 

predictions, maintaining the correct topology of reduced-

order vorticity magnitude contours across various 

instances (see Fig. 26). The estimated MSE was 23.472%, 

attributed to the reduced correlation with pressure after 

partial derivation. This prediction was performed using 

only three points, indicating that increasing the number of 

data points could improve accuracy, but it does not impact 

the topology information. 

 After thoroughly analyzing the predictions of the low-

order vorticity dataset across all time instants, we 

observed that the model consistently and accurately 

reflects the topology of the vortices. This includes not only 

the precise positioning of the vortices but also the accurate 

identification of maximum and minimum value locations. 

Additionally, the model demonstrated a strong capability 

in predicting the high vorticity values at the wall 

immediately after the (BFS), which signifies the 

reformation and strengthening of the new boundary layer. 

These accurate predictions are indicative of the model’s 

robustness and reliability in capturing the critical aspects 

of separated flow dynamics. Consequently, we can 

confidently conclude that using just three wall pressure 

measurements is sufficient to provide comprehensive 

information about all the essential dynamics occurring 

over the BFS across all time instants. Although there is a 

slight difference between the original and predicted values 

in terms of scale, but the positions of the vortices are 

highly accurate. This minor discrepancy in value does not 

affect the overall topology information, which remains 

correct and reliable. As a result, this difference does not 

impact the essential data needed for effective feedback 

control in managing the flow dynamics. 
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(a) Original reduced order vorticity at t1 
(b) Predicted reduced order vorticity using three best wall 

pressure points at t1 

  

(c) Original reduced order vorticity at t2 
(d) Predicted reduced order vorticity using three best 

wall pressure points at t2 

  

(e) Original reduced order vorticity at t3. 
  (f) Predicted reduced order vorticity using three best 

wall pressure points at t3 
Fig. 26 Prediction of low order vorticity magnitude using three best points wall pressure. (t1, t2, t3 stands for 

different instants of time flow) 

 

CONCLUSION  

This study highlights significant findings, on 

predicting separated flow dynamics within a high 

Reynolds number regime (Reh = 89100), by utilizing 

artificial intelligence techniques, specifically the LSTM 

RNN method combined with (POD). The research 

emphasizes the effectiveness of the DES model in 

accurately replicating flow characteristics and wall 

pressure in such turbulent conditions, thereby establishing 

a reliable framework for analyzing such flow dynamics. In 

addition, spectral analysis is used to quantitatively 

evaluate flow characteristics, demonstrating strong 

alignment with experimental data and further enhancing 

confidence in the DES model's accuracy. Establishing a 

correlation between the velocity field and wall pressure is 

crucial before applying machine learning techniques. The 

study demonstrates that velocity fields have a strong 

relationship with wall pressure points around the 

recirculation zone. The integration of AI methods, 

particularly the LSTM RNN, facilitates the development 

of a deep learning framework that effectively links wall 

pressure points with the velocity field, yielding promising 

results in predicting flow dynamics. The research 

highlights the LSTM model’s ability to make precise 

velocity magnitude predictions, achieving a low (MSE) of 

13.48% when utilizing data from ten wall pressure points. 

The application of POD to reduce system dimensionality 

further enhances prediction accuracy, lowering the MSE 

to 5.07%. This approach not only retains essential 

dynamics but also improves computational efficiency and 

the learning process. Additionally, the study investigates 

different combinations of pressure measurements to 

determine the most effective region for velocity 

prediction. Remarkably, it demonstrates that even with 

only three wall pressure points, the model can achieve an 

acceptable MSE of 23.48% for low-order vorticity 

predictions. This finding is crucial for developing 

advanced control systems that require minimal data input, 

and establishing a closed-loop control system to manage 

separated flow on a (BFS). However, a noted limitation of 

this study is the significant computational resources 

required and the necessity for large datasets to enhance the 

model's robustness and reliability. 
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