Al-Obaidi, A. (2018). Experimental and numerical investigations on the cavitation phenomenon in a centrifugal pump [Doctoral dissertation, University of Huddersfield]. Huddersfield, UK. Ahmed Al-Obaidi FINAL THESIS. PDF (hud.ac.uk)
Al-Obaidi, A. (2024). Effect of different guide vane configurations on flow field investigation and performances of an axial pump based on CFD analysis and vibration investigation.
Experimental Techniques, 48(1), 69-88.
https://doi.org/10.1007/s40799-023-00641-5
Al-Obaidi, A. R. (2023). Experimental diagnostic of cavitation flow in the centrifugal pump under various impeller speeds based on acoustic analysis method.
Archives of Acoustics, 48(2), 159–170.
https://doi.org/10.24425/aoa.2023.145234
Avanzi, F., Baù, A., De Vanna, F., & Benini, E. (2023). Numerical Assessment of a two-phase model for propulsive pump performance prediction.
Energies,
16(18), 6592.
https://doi.org/10.3390/math9040343
Chang, H., Li, W., Shi, W., & Liu, J. (2018). Effect of blade profile with different thickness distribution on the pressure characteristics of novel self-priming pump.
Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 1-20.
https://doi.org/10.1007/s40430-018-1440-x
Furuya, O., & Chiang, W. L. (1988). A new pumpjet design theory. Honeywell Inc Hopkins Mn.
Gan, G., Duan, Y., Yi, J., Fu, Q., Zhu, R., & Shi, W. (2023a). Effect of tip clearance on the cavitation performance of high-speed pump-jet propeller.
Processes,
11(11), 3050.
https://doi.org/10.3390/pr11113050
Gan, G., Shi, W., Yi, J., Fu, Q., Zhu, R., & Duan, Y. (2023b). The transient characteristics of the cavitation evolution of the shroud of high-speed pump-jet propellers under different operating conditions.
Water,
15(17), 3073.
https://doi.org/10.3390/w15173073
Gangipamula, R., Ranjan, P., & Patil, R. S. (2023). Comparative studies on air borne noise and flow induced noise of a double suction centrifugal pump.
Applied Acoustics, 202, 109148.
https://doi.org/10.1016/j.apacoust.2022.109148
Han, C. Z., Xu, S., Cheng, H. Y., Ji, B., & Zhang, Z. Y. (2020). LES method of the tip clearance vortex cavitation in a propelling pump with special emphasis on the cavitation-vortex interaction.
Journal of Hydrodynamics,
32(6), 1212-1216.
https://doi.org/10.1007/s42241-020-0070-9
Han, R., Yu, H., Hua, H., Li, H., Huang, X., & Dong, X. (2023). Experimental study of controlling clearance flow in a pump-jet propulsor.
Chinese Journal of Ship Research,
18(1).
https://doi.org/10.19693/j.issn.1673-3185.02419
Huang, X., Shi, S., Su, Z., Tang, W., & Hua, H. (2022). Reducing underwater radiated noise of a SUBOFF model propelled by a pump-jet without tip clearance: Numerical simulation.
Ocean Engineering, 243, 110277.
https://doi.org/10.1016/j.oceaneng.2021.110277
Ji, X., Dong, X., & Yang, C. (2021). Attenuation of the tip-clearance flow in a pump-jet propulsor by thickening and raking the tips of rotor blades: A numerical study.
Applied Ocean Research,
113, 102723.
https://doi.org/10.1016/j.apor.2021.102723
Li, F., Huang, Q., Pan, G., Wu, B., & Li, H. (2023a). Transient analysis of the pre-whirl pump-jet propulsor with different blade numbers.
Ships and Offshore Structures,
18(6), 846-858.
https://doi.org/10.1080/17445302.2022.2076992
Li, H., Huang, Q., & Pan, G. (2023b). Numerical radiated noise prediction of a pre-swirl stator pump-jet propulsor.
Journal of Marine Science and Application,
22(2), 344-358.
https://doi.org/10.1007/s11804-023-00340-y
Li, H., Huang, Q., Pan, G., Dong, X., & Li, F. (2022). An investigation on the flow and vortical structure of a pre-swirl stator pump-jet propulsor in drift.
Ocean Engineering,
250, 111061.
https://doi.org/10.1016/j.oceaneng.2022.111061
Lighthill, M. J. (1952). On sound generated aerodynamically I. General theory.
Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 211(1107), 564-587.
https://doi.org/10.1098/rspa.1952.0060
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications.
AIAA Journal, 32(8), 1598-1605.
https://doi.org/10.2514/3.12149
Proudman, I. (1952). The generation of noise by isotropic turbulence.
Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 214(1116), 119-132.
https://doi.org/10.1098/rspa.1952.0154
Qin, D., Pan, G., Lee, S., Huang, Q., & Shi, Y. (2019). Underwater radiated noise reduction technology using sawtooth duct for pumpjet propulsor.
Ocean Engineering, 188, 106228.
https://doi.org/10.1016/j.oceaneng.2019.106228
Qiu, C., Huang, Q., Pan, G., Shi, Y., & Dong, X. (2020). Numerical simulation of hydrodynamic and cavitation performance of pumpjet propulsor with different tip clearances in oblique flow.
Ocean Engineering, 209, 107285.
https://doi.org/10.1016/j.oceaneng.2020.107285
Satyanarayana, B., Ramji, K., & Rao, M. N. (2010). Cavitation studies on axi-symmetric underwater body with pumpjet propulsor in cavitation tunnel.
International Journal of Naval Architecture and Ocean Engineering,
2(4), 185-194.
https://doi.org/10.2478/IJNAOE-2013-0035
Shi, S., Huang, X., Rao, Z., Su, Z., & Hua, H. (2022). Numerical analysis on flow noise and structure-borne noise of fully appended SUBOFF propelled by a pump-jet.
Engineering Analysis with Boundary Elements,
138, 140-158.
https://doi.org/10.1016/j.enganabound.2022.02.012
Si, Q., Ali, A., Liao, M., Yuan, J., Gu, Y., Yuan, S., & Bois, G. (2023). Assessment of cavitation noise in a centrifugal pump using acoustic finite element method and spherical cavity radiation theory.
Engineering Applications of Computational Fluid Mechanics, 17(1), 2173302.
https://doi.org/10.1080/19942060.2023.2173302
Si, Q., Shen, C., He, X., Li, H., Huang, K., & Yuan, J. (2020). Numerical and experimental study on the flow-induced noise characteristics of high-speed centrifugal pumps.
Applied Sciences, 10(9), 3105.
https://doi.org/10.3390/app10093105
Spalart, P. R. (1997). Comments on the Feasibility of LES for Wings and on the Hybrid RANS/LES Approach. [Conference session]. Proceedings of the First AFOSR International Conference on DNS/LES.
Su, Z., Shi, S., Huang, X., Rao, Z., & Hua, H. (2021). Vibro-acoustic characteristics of a coupled pump-jet–shafting system–SUBOFF model under distributed unsteady hydrodynamics by a pump-jet.
Ocean Engineering, 235, 109429.
https://doi.org/10.1016/j.oceaneng.2021.109429
Sun, Y., Peng, H., Liu, W., Guo, J., & Guo, Y. (2022). Comparison of the hydrodynamic performance of front and rear-stator pump-jet propulsors in an oblique wake under the cavitation condition.
Physics of Fluids,
34(3).
https://doi.org/10.1063/5.0082769
Vaz, G., Hally, D., Huuva, T., Bulten, N., Muller, P., Becchi, P., Herrer, J., Whitworth, S., Macé, R., & Korsström, A. (2015, May). Cavitating flow calculations for the E779A propeller in open water and behind conditions: code comparison and solution validation [Conference session]. Proceedings of the 4th International Symposium on Marine Propulsors, Austin, TX, USA (Vol. 31).
https://www.researchgate.net/publication/275622126_Cavitating_Flow_Calculations_for_the_E779A_Propeller_in_Open_Water_and_Behind_Conditions_Code_Comparison_and_Solution_Validation
Yuan, J., Chen, Y., Wang, L., Fu, Y., Zhou, Y., Xu, J., & Lu, R. (2020). Dynamic analysis of cavitation tip vortex of pump-jet propeller based on DES.
Applied Sciences,
10(17), 5998.
https://doi.org/10.3390/app10175998
Zhang, Y., Han, J., Ji, S., Wu, R., Huang, B., Zhang, D., & Wu, D. (2024). Excitation force on a pump-jet propeller: The clocking effect of pre-swirl stator.
Ocean Engineering,
293, 116711.
https://doi.org/10.1016/j.oceaneng.2024.116711
Zhao, X., Shen, X., Geng, L., Zhang, D., & van Esch, B. B. (2022). Effects of cavitation on the hydrodynamic loading and wake vortex evolution of a pre-swirl pump-jet propulsor.
Ocean Engineering,
266, 113069..
https://doi.org/10.1016/j.oceaneng.2022.113069
Zhou, Y., Pavesi, G., Yuan, J., & Fu, Y. (2022). A review on hydrodynamic performance and design of pump-jet: Advances, challenges and prospects.
Journal of Marine Science and Engineering,
10(10), 1514.
https://doi.org/10.3390/jmse10101514