Numerical Investigation on the Cavitating Flow and the Cavitation-induced Noise in the Pump-jet Propeller

Document Type : Regular Article

Authors

1 National Research Center of Pump, Jiangsu University, Zhenjiang 212013, Jiangsu, China

2 School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China

10.47176/jafm.18.2.2813

Abstract

The noise hazard posed by cavitation in pump-jet propellers is a significant concern during oceanic operations. This study evaluates the cavitation performance and associated noise characteristics of pump-jet propellers in underwater conditions, further examining the interplay between cavitation phenomena and noise radiation. Cavitation performance across varying advance coefficients was scrutinized using the k-ω SST turbulence model alongside the Zwart cavitation model. Employing Lighthill’s analogy method and bubble radiation theory, analyses of flow-induced noise and noise due to cavitation were conducted. The findings indicate an intensification of cavitation within the pump-jet with increased rotational speed and a reduction in cavitation number, aligning pressure and velocity distributions with observed cavitation patterns. Cavitation markedly elevates flow-induced noise levels, with noise under cavitation conditions found to be around 50 dB higher compared to non-cavitation conditions. Considering cavitation bubble radiation noise, the volumetric pulsations and their amplitudes in the pump-jet enlarge as the bubbles progress through initial growth to maturity. Predominantly, the noise levels from bubble volume pulsations occur within low to medium frequency ranges.

Keywords

Main Subjects


Al-Obaidi, A. (2018). Experimental and numerical investigations on the cavitation phenomenon in a centrifugal pump [Doctoral dissertation, University of Huddersfield]. Huddersfield, UK. Ahmed Al-Obaidi FINAL THESIS. PDF (hud.ac.uk)
Al-Obaidi, A. (2024). Effect of different guide vane configurations on flow field investigation and performances of an axial pump based on CFD analysis and vibration investigation. Experimental Techniques, 48(1), 69-88. https://doi.org/10.1007/s40799-023-00641-5
Al-Obaidi, A. R. (2023). Experimental diagnostic of cavitation flow in the centrifugal pump under various impeller speeds based on acoustic analysis method. Archives of Acoustics, 48(2), 159–170. https://doi.org/10.24425/aoa.2023.145234
Avanzi, F., Baù, A., De Vanna, F., & Benini, E. (2023). Numerical Assessment of a two-phase model for propulsive pump performance prediction. Energies, 16(18), 6592. https://doi.org/10.3390/math9040343
Chang, H., Li, W., Shi, W., & Liu, J. (2018). Effect of blade profile with different thickness distribution on the pressure characteristics of novel self-priming pump. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 1-20. https://doi.org/10.1007/s40430-018-1440-x
Furuya, O., & Chiang, W. L. (1988). A new pumpjet design theory. Honeywell Inc Hopkins Mn.
Gan, G., Duan, Y., Yi, J., Fu, Q., Zhu, R., & Shi, W. (2023a). Effect of tip clearance on the cavitation performance of high-speed pump-jet propeller. Processes, 11(11), 3050. https://doi.org/10.3390/pr11113050
Gan, G., Shi, W., Yi, J., Fu, Q., Zhu, R., & Duan, Y. (2023b). The transient characteristics of the cavitation evolution of the shroud of high-speed pump-jet propellers under different operating conditions. Water, 15(17), 3073. https://doi.org/10.3390/w15173073
Gangipamula, R., Ranjan, P., & Patil, R. S. (2023). Comparative studies on air borne noise and flow induced noise of a double suction centrifugal pump. Applied Acoustics, 202, 109148. https://doi.org/10.1016/j.apacoust.2022.109148
Ghasemian, M., & Nejat, A. (2015). Aero-acoustics prediction of a vertical axis wind turbine using Large Eddy Simulation and acoustic analogy. Energy, 88, 711-717. https://doi.org/10.1016/j.energy.2015.05.098
Han, C. Z., Xu, S., Cheng, H. Y., Ji, B., & Zhang, Z. Y. (2020). LES method of the tip clearance vortex cavitation in a propelling pump with special emphasis on the cavitation-vortex interaction. Journal of Hydrodynamics, 32(6), 1212-1216. https://doi.org/10.1007/s42241-020-0070-9
Han, R., Yu, H., Hua, H., Li, H., Huang, X., & Dong, X. (2023). Experimental study of controlling clearance flow in a pump-jet propulsor. Chinese Journal of Ship Research, 18(1). https://doi.org/10.19693/j.issn.1673-3185.02419
Hashem, I., Mohamed, M. H., & Hafiz, A. A. (2017). Aero-acoustics noise assessment for Wind-Lens turbine. Energy, 118, 345-368. https://doi.org/10.1016/j.energy.2016.12.049
Huang, X., Shi, S., Su, Z., Tang, W., & Hua, H. (2022). Reducing underwater radiated noise of a SUBOFF model propelled by a pump-jet without tip clearance: Numerical simulation. Ocean Engineering, 243, 110277. https://doi.org/10.1016/j.oceaneng.2021.110277
Ji, X., Dong, X., & Yang, C. (2021). Attenuation of the tip-clearance flow in a pump-jet propulsor by thickening and raking the tips of rotor blades: A numerical study. Applied Ocean Research, 113, 102723. https://doi.org/10.1016/j.apor.2021.102723
Kowalczyk, S., & Felicjancik, J. (2016). Numerical and experimental propeller noise investigations. Ocean Engineering, 120, 108-115. https://doi.org/10.1016/j.oceaneng.2016.01.032
Li, F., Huang, Q., Pan, G., Wu, B., & Li, H. (2023a). Transient analysis of the pre-whirl pump-jet propulsor with different blade numbers. Ships and Offshore Structures, 18(6), 846-858. https://doi.org/10.1080/17445302.2022.2076992
Li, H., Huang, Q., & Pan, G. (2023b). Numerical radiated noise prediction of a pre-swirl stator pump-jet propulsor. Journal of Marine Science and Application, 22(2), 344-358. https://doi.org/10.1007/s11804-023-00340-y
Li, H., Huang, Q., Pan, G., Dong, X., & Li, F. (2022). An investigation on the flow and vortical structure of a pre-swirl stator pump-jet propulsor in drift. Ocean Engineering, 250, 111061. https://doi.org/10.1016/j.oceaneng.2022.111061
Lighthill, M. J. (1952). On sound generated aerodynamically I. General theory. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 211(1107), 564-587. https://doi.org/10.1098/rspa.1952.0060
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. https://doi.org/10.2514/3.12149
Mohamed, M. (2016). Reduction of the generated aero-acoustics noise of a vertical axis wind turbine using CFD (Computational Fluid Dynamics) techniques. Energy, 96, 531-544. https://doi.org/10.1016/j.energy.2015.12.100
Proudman, I. (1952). The generation of noise by isotropic turbulence. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 214(1116), 119-132. https://doi.org/10.1098/rspa.1952.0154
Qin, D., Pan, G., Lee, S., Huang, Q., & Shi, Y. (2019). Underwater radiated noise reduction technology using sawtooth duct for pumpjet propulsor. Ocean Engineering, 188, 106228. https://doi.org/10.1016/j.oceaneng.2019.106228
Qiu, C., Huang, Q., Pan, G., Shi, Y., & Dong, X. (2020). Numerical simulation of hydrodynamic and cavitation performance of pumpjet propulsor with different tip clearances in oblique flow. Ocean Engineering, 209, 107285. https://doi.org/10.1016/j.oceaneng.2020.107285
Satyanarayana, B., Ramji, K., & Rao, M. N. (2010). Cavitation studies on axi-symmetric underwater body with pumpjet propulsor in cavitation tunnel. International Journal of Naval Architecture and Ocean Engineering, 2(4), 185-194. https://doi.org/10.2478/IJNAOE-2013-0035
Shi, S., Huang, X., Rao, Z., Su, Z., & Hua, H. (2022). Numerical analysis on flow noise and structure-borne noise of fully appended SUBOFF propelled by a pump-jet. Engineering Analysis with Boundary Elements, 138, 140-158. https://doi.org/10.1016/j.enganabound.2022.02.012
Si, Q., Ali, A., Liao, M., Yuan, J., Gu, Y., Yuan, S., & Bois, G. (2023). Assessment of cavitation noise in a centrifugal pump using acoustic finite element method and spherical cavity radiation theory. Engineering Applications of Computational Fluid Mechanics, 17(1), 2173302. https://doi.org/10.1080/19942060.2023.2173302
Si, Q., Shen, C., He, X., Li, H., Huang, K., & Yuan, J. (2020). Numerical and experimental study on the flow-induced noise characteristics of high-speed centrifugal pumps. Applied Sciences, 10(9), 3105. https://doi.org/10.3390/app10093105
Spalart, P. R. (1997). Comments on the Feasibility of LES for Wings and on the Hybrid RANS/LES Approach. [Conference session]. Proceedings of the First AFOSR International Conference on DNS/LES.
Su, Z., Shi, S., Huang, X., Rao, Z., & Hua, H. (2021). Vibro-acoustic characteristics of a coupled pump-jet–shafting system–SUBOFF model under distributed unsteady hydrodynamics by a pump-jet. Ocean Engineering, 235, 109429. https://doi.org/10.1016/j.oceaneng.2021.109429
Sun, Y., Peng, H., Liu, W., Guo, J., & Guo, Y. (2022). Comparison of the hydrodynamic performance of front and rear-stator pump-jet propulsors in an oblique wake under the cavitation condition. Physics of Fluids, 34(3). https://doi.org/10.1063/5.0082769
Vaz, G., Hally, D., Huuva, T., Bulten, N., Muller, P., Becchi, P., Herrer, J., Whitworth, S., Macé, R., & Korsström, A. (2015, May). Cavitating flow calculations for the E779A propeller in open water and behind conditions: code comparison and solution validation [Conference session]. Proceedings of the 4th International Symposium on Marine Propulsors, Austin, TX, USA (Vol. 31). https://www.researchgate.net/publication/275622126_Cavitating_Flow_Calculations_for_the_E779A_Propeller_in_Open_Water_and_Behind_Conditions_Code_Comparison_and_Solution_Validation
Xu, Z., & Lai, H. (2023). Comparison of cavitation in two axial-flow water jet propulsion pumps. Processes, 11(7), 2137. https://doi.org/10.3390/pr11072137
Yuan, J., Chen, Y., Wang, L., Fu, Y., Zhou, Y., Xu, J., & Lu, R. (2020). Dynamic analysis of cavitation tip vortex of pump-jet propeller based on DES. Applied Sciences, 10(17), 5998. https://doi.org/10.3390/app10175998
Zhang, Y., Han, J., Ji, S., Wu, R., Huang, B., Zhang, D., & Wu, D. (2024). Excitation force on a pump-jet propeller: The clocking effect of pre-swirl stator. Ocean Engineering, 293, 116711. https://doi.org/10.1016/j.oceaneng.2024.116711
Zhao, X., Shen, X., Geng, L., Zhang, D., & van Esch, B. B. (2022). Effects of cavitation on the hydrodynamic loading and wake vortex evolution of a pre-swirl pump-jet propulsor. Ocean Engineering, 266, 113069.. https://doi.org/10.1016/j.oceaneng.2022.113069
Zhou, Y., Pavesi, G., Yuan, J., & Fu, Y. (2022). A review on hydrodynamic performance and design of pump-jet: Advances, challenges and prospects. Journal of Marine Science and Engineering, 10(10), 1514. https://doi.org/10.3390/jmse10101514
Zwart, P. J., Gerber, A. G., & Belamri, T. (2004). A two-phase flow model for predicting cavitation dynamics [Conference session]. Fifth International Conference on Multiphase Flow, Yokohama, Japan. https://www.researchgate.net/publication/306205415