Afgan, I., Moulinec, C., Prosser, R., & Laurence, D. (2007). Large eddy simulation of turbulent flow for wall mounted cantilever cylinders of aspect ratio 6 and 10.
International Journal of Heat and Fluid Flow, 28(4), 561–574.
https://doi.org/10.1016/j.ijheatfluidflow.2007.04.014.
Akkermans, R. A. D., Ewert, R. S., Moghadam, M. A., Dierke, J., & Buchmann, N. (2015). Overset DNS with application to sound source prediction. In S. Girimaji (Eds.), Notes on Numerical Fluid Mechanics and Multidisciplinary Design. (pp. 59-68). Springer.
https://doi.org/10.1007/978-3-319-15141-0_4.
Ananthan, V. B., Akkermans, R. A. D., Hu, T., Liu, P. Q., & Rathje, N. (2022). Trailing-edge noise reduction potential of a locally applied shallow dimpled surface.
Journal of Sound and Vibration, 525, 116745.
https://doi.org/10.1016/j.jsv.2022.116745.
Ananthan, V. B., Bernicke, P., Akkermans, R. A. D., Hu, T., & Liu, P. Q. (2020). Effect of porous material on trailing edge sound sources of a lifting airfoil by zonal Overset-LES.
Journal of Sound and Vibration, 480, 115386.
https://doi.org/10.1016/j.jsv.2020.115386.
Becker, S., Hahn, C., Kaltenbacher, M., & Lerch, R. (2008). Flow-induced sound of wall-mounted cylinders with different geometries.
AIAA Journal, 46(9), 2265–2281.
https://doi.org/10.2514/1.34865.
Bernicke, P., Akkermans, R. A. D., Ananthan, V. B., Ewert, R., Dierke, J., & Rossian, L. (2019). A zonal noise prediction method for trailing-edge noise with a porous model.
International Journal of Heat and Fluid Flow, 80. 108469.
https://doi.org/10.1016/j.ijheatfluidflow.2019.108469.
Bourgeois, J. A., Noack, B. R., & Martinuzzi, R. J. (2013). Generalized phase average with applications to sensor-based flow estimation of the wall-mounted square cylinder wake.
Journal of Fluid Mechanics, 736, 316.
https://doi.org/10.1017/jfm.2013.494.
Bourgeois, J. A., Sattari, P., & Martinuzzi, R. J. (2011). Alternating half-loop shedding in the turbulent wake of a finite surface-mounted square cylinder with a thin boundary layer.
Physics of Fluids, 23(9), 095101.
https://doi.org/10.1063/1.3623463.
Cao, Y., Ping, H., Tamura, T., & Zhou, D. (2022). Wind peak pressures on a square-section cylinder: flow mechanism and standard/conditional POD analyses.
Journal of Wind Engineering and Industrial Aerodynamics, 222, 104918
https://doi.org/10.1016/j.jweia.2022.104918.
Cao, Y., Tamura, T., & Kawai, H. (2019). Investigation of wall pressures and surface flow patterns on a wall-mounted square cylinder using very high-resolution Cartesian mesh.
Journal of Wind Engineering and Industrial Aerodynamics, 188, 1–18.
https://doi.org/10.1016/j. jweia.2019.02.013.
Chen, G., Li X., Sun, B., & Liang, X. (2022). Effect of incoming boundary layer thickness on the flow dynamics of a square finite wall-mounted cylinder.
Physics of Fluids, 34, 015105.
https://doi.org/10.1063/5.0076541.
Dawi, A. H., & Akkermans, R. A. D. (2018). Direct and integral noise computation of two square cylinders in tandem arrangement.
Journal of Sound and Vibration, 436, 138–154.
https://doi.org/10.1016/j.jsv.2018.09.008.
Duan, F., & Wang, J. J. (2021). Fluid–structure–sound interaction in noise reduction of a circular cylinder with flexible splitter plate.
Journal of Fluid Mechanics, 920, A6.
https://doi.org/10.1017/jfm.2021.403.
Frederich, O., Wassen, E., Thiele, F., Jensch, M., Brede, M., Huttmann, F., & Leder, A. (2008).
Numerical simulation of the flow around a finite cylinder with ground plate in comparison to experimental measurements. [Conference session]. Contributions to the 15th STAB/DGLR Symposium, Darmstadt, Germany.
https://doi.org/10.1007/978-3-540-74460-3_43
Geyer, T. F. (2020). Vortex shedding noise from finite, wall-mounted, circular cylinders Modified with Porous Material.
AIAA Journal 58(5), 2019-2695.
https://doi.org/10.2514/1.J058877.
Hosseini, Z., Bourgeois, J. A., & Martinuzzi, R. J. (2013). Large-scale structure in dipole and quadrupole wake of a wall-mounted finite rectangular cylinder.
Experiments in Fluids, 54(9)
http://dx.doi.org/10.1007/s00348-013-1595-2.
Kadivar, E., Dawoodian, M., Lin, Y., & Moctar, O. (2024). Experiments on cavitation control around a cylinder using biomimetic riblets.
Journal of Marine Science and Engineering, 12, 293.
https://doi.org/10.3390/jmse12020293.
Kato, C., Iida, A., Takano, Y., Fujita, H., & Ikegawa, M. (1993). Numerical prediction of aerodynamic noise radiated from low Mach number turbulent wake,
AIAA-Paper, 93-145.
https://doi.org/10.2514/6.1993-145
Kawamura, T., Hiwada, M., Hibino, T., Mabuchi, I., & Kumada, M. (1984). Flow around a finite circular cylinder on a flat plate: cylinder height greater than turbulent boundary layer thickness.
Bulletin of JSME, 27, 2142-2151.
https://doi.org/10.1299/jsme1958.27.2142
Kim, W. W., & Menon, S. (1997, January). Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. [Conference session] Technical Report AIAA-97-0210. 35th Aerospace Sciences Meeting, Reno, NV. American Institute of Aeronautics and Astronautics.
King, W. F., & Pfizenmaier, E. (2009). An experimental study of sound generated by flows around cylinders of different cross-section.
Journal of Sound and Vibration, 328(3), 318–337.
https://doi.org/10.1016/j.jsv.2009.07.034.
Kitagawa, T., Fujina, Y., Kimura, K., & Mizuno, Y. (2002). Wind pressures measurement on end-cell-induced vibration of a cantilevered circular cylinder.
Journal of Wind Engineering and Industrial Aerodynamics, 90(4–5), 395–405,
http://dx.doi.org/10.1016/S0167-6105(01)00200-8.
Kitagawa, T., Fujino, Y., & Kimura, K. (1999). Effects of free-end condition on end-cell-induced vibration.
Journal of Fluids and Structures, 13(4), 499-518.
https://doi.org/10.1006/jfls.1999.0214.
Lee, C. W. (1997). Wake structure behind a circular cylinder with a free end. [Conference session] Proceedings of the 35th Heat Transfer and Fluid Mechanics Institute, Sacramento, CA. Heat Transfer and Fluid Mechanics Institute California State University, 35, 241–251.
Lenz, B., Magalhaes, J. F., & Suh S. (2019). Numerical simulation of flow-induced sound from a wall-mounted finite length cylinder.
The Journal of the Acoustical Society of America, 146(4), 2838–2838.
https://doi.org/10.1121/1.5136838.
Luo, S. C. (1993). Flow past a finite length circular cylinder. [Conference session]. Third International Offshore and Polar Engineering Conference.
Maryami, R., Arcondoulis, E. J. G., Guo, J., & Liu, Y. (2024). Experimental investigation of active local blowing on the aerodynamic noise reduction of a circular cylinder.
Journal of Sound and Vibration, 578, 118360.
https://doi.org/10.1016/j.jsv.2024.118360.
Moradi, M. A., & Mojra, A. (2024). Flow and noise control of a cylinder using grooves filled with porous material.
Physics of Fluids, 36, 045133.
https://doi.org/10.1063/5.0205125.
Moreau, D. J., & Doolan, C. J. (2013). Flow-induced sound of wall-mounted finite length cylinders.
AIAA Journal, 51(10), 2493–2502.
https://doi.org/10.2514/1.J052391.
Park, C. W., & Lee, S. J. (2000). Free end effects on the near wake flow structure behind a finite circular cylinder.
Journal of Wind Engineering and Industrial Aerodynamics, 88(2-3), 231-246.
https://doi.org/10.1016/S0167-6105(00)00051-9.
Pattenden, R. J., Turnock, S. R., & Zhang, X. (2005). Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane.
Experiments in Fluids,
39(1),10–21.
http://dx.doi.org/10.1007/s00348-005-0949-9.
Porteous, R., Moreau, D. J., & Doolan, C. J. (2017). The aeroacoustics of finite wall-mounted square cylinders.
Journal of Fluid Mechanics, 832, 287–328.
https://doi.org/10.1017/jfm.2017.682.
Qin, D., Li, T., Zhang, J. & Zhou, N. (2023). Numerical study on aerodynamic drag and noise of high-speed pantograph by introducing spanwise waviness.
Engineering Applications of Computational Fluid Mechanics, 17, 1, 2260463.
https://doi.org/10.1080/19942060.2023.2260463.
Saeedi, M., & Wang, B .C. (2016). Large-eddy simulation of turbulent flow around a finite-height wall-mounted square cylinder within a thin boundary layer.
Flow, Turbulence and Combustion, 97(2), 513–538.
https://doi.org/10.1007/s10494-015-9700-7.
Sakamoto, H., & Arie, M. (1983). Vortex shedding from a rectangular prism and a circular cylinder placed vertically in a turbulent boundary layer.
Journal of Fluid Mechanics, 126, 147–165.
https://doi.org/10.1017/S0022112083000087.
Sattari, P., Bourgeois, J. A., & Martinuzzi, R. J. (2012). On the vortex dynamics in the wake of a finite surface-mounted square cylinder.
Experiments in Fluids, 52(5), 1149–1167.
https://doi.org/10.1007/s00348-011-1244-6
Wang, C. H., & Li, Y. (2023). Control of a circular cylinder flow using attached solid/perforated splitter plates at deflection angles.
Physics of Fluids, 35, 105109.
https://doi.org/10.1063/5.0165632.
Wang, H. F., Zhou, Y., Chan, C. K., & Lam, K. S. (2006). Effect of initial conditions on interaction between a boundary layer and a wall-mounted finite-length-cylinder wake.
Physics of Fluids, 18(6), 561
https://doi.org/10.1063/1.2212329.
Xiao, C., & Tong F. (2023). Experiment on noise reduction of a wavy cylinder with a large spanwise wavelength and large aspect ratio in aeroacoustic wind tunnels.
Applied Sciences, 13, 6061.
https://doi.org/10.3390/app13106061.
Yauwenas, Y., Porteous, R., Moreau, D. J., & Doolan, C. J. (2019). The effect of aspect ratio on the wake structure of finite wall-mounted square cylinders.
Journal of Fluid Mechanics, 875, 929-960.
https://doi.org/10.1017/ jfm.2019.522.
Zheng, C. T., Zhou, P., Zhong, S. Y., & Zhang, X. (2023). Experimental investigation on cylinder noise and its reductions by identifying aerodynamic sound sources in flow fields.
Physics of Fluids, 35, 035103.
https://doi.org/10.1063/5.0138080.