Acharya, N., Trivedi, C., Wahl, N. M., Gautam, S., Chitrakar, S., & Dahlhaug, O. G. (2019). Numerical study of sediment erosion in guide vanes of a high head Francis turbine.
Journal of Physics: Conference Series,
1266(1).
https://doi.org/10.1088/1742-6596/1266/1/012004
Arabnejad, H., Mansouri, A., Shirazi, S. A., & McLaury, B. S. (2015, September 28).
Evaluation of solid particle erosion equations and models for oil and gas industry applications. Day 2 Tue, September 29, 2015.
https://doi.org/10.2118/174987-MS
Arndt, R. E. A., & Ellis, C. R. (1993). investigation of the use of air injection to mitigate·cavitation erosion.
Bogey, C. (2018). Grid sensitivity of flow field and noise of high-Reynolds-number jets computed by large-eddy simulation.
International Journal of Aeroacoustics,
17(4–5), 399–424.
https://doi.org/10.1177/1475472X18778287
Bunea, F., Bucur, D. M., Ciocan, G. D., & Dunca, G. (2014).
Aeration solution of water used by hydraulic turbines to respect the environmental policies. 2014 International Conference and Exposition on Electrical and Power Engineering (EPE), 1015–1020.
https://doi.org/10.1109/ICEPE.2014.6970062
Devolder, B., Rauwoens, P., & Troch, P. (2017). Application of a buoyancy-modified k-ω SST turbulence model to simulate wave run-up around a monopile subjected to regular waves using OpenFOAM®.
Coastal Engineering,
125, 81–94.
https://doi.org/10.1016/j.coastaleng.2017.04.004
Dhiman, P., Bhat, A., & Karn, A. (2022, October). The Efficacy of Air Injection in Mitigating Silt Erosion on Hydroturbine Blades: A Computational Study. In International Conference on Hydro and Renewable Energy (pp. 437-444). Singapore: Springer Nature Singapore.
Dhiman, P., Singh, V. P., & Karn, A. (2024). Experimental and computational analysis of air injection as a mitigation technique for silt erosion in hydro turbines. Renewable
Energy and Sustainable Development,
10(2), 345.
https://doi.org/10.21622/resd.2024.10.
Grant, G., & Tabakoff, W. (1975). Erosion prediction in turbomachinery resulting from environmental solid particles.
Journal of Aircraft,
12(5), 471–478.
https://doi.org/10.2514/3.59826
Hua, H., Zeng, Y. Z., Wang, H. Y., Ou, S. B., Zhang, Z. Z., & Liu, X. B. (2015). Numerical analysis of solid-liquid two-phase turbulent flow in Francis turbine runner with splitter blades in sandy water.
Advances in Mechanical Engineering,
7(3), 1–10.
https://doi.org/10.1177/1687814015573821
Johansson, M. (2012). Evaluation of RANS turbulence models for the hydrodynamic analysis of an axisymmetric streamlined body with special consideration of the velocity distribution in the stern region.
Kang, M. W., Park, N., & Suh, S. H. (2016). Numerical study on sediment erosion of francis turbine with different operating conditions and sediment inflow rates.
Procedia Engineering,
157, 457–464.
https://doi.org/10.1016/J.PROENG.2016.08.389
Karunarathne, S. S., & Tokheim, L. A. (2017). Comparison of the influence of drag models in CFD simulation of particle mixing and segregation in a rotating cylinder. 151–156.
https://doi.org/10.3384/ecp17138151
Kaufmann, A. (2004). Towards the simulation of large scales in Euler-Euler formulation of two-phase reactive flows (Doctoral dissertation, Toulouse, INPT).
Klajbár, C., & Könözsy, L. (2016). Multiphase eulerian simulations of a sedimentation process in a solid-fluid particle-laden flow.
Li, Y., Zhang, H., Lin, Z., He, Z., Xiang, J., & Su, X. (2019). Relationship between wear formation and large-particle motion in a pipe bend.
Royal Society Open Science,
6(1), 181254.
https://doi.org/10.1098/rsos.181254
Masoodi, J. H., & Harmain, G. A. (2017). Sediment erosion of Francis turbine runners in the Himalayan region of India. International Journal on Hydropower and Dams, 24, 82-89.
McLaury, B. A., Shirazi, S. A., Shadley, J. R., & Rybicki, E. F. (1995). Parameters affecting flow accelerated erosion and erosion-corrosion.
NACE International, Houston, TX (United States). https://www.osti.gov/biblio/106121
Neopane, H. P., Dahlhaug, O. G., & Cervantes, M. J. (2012). The effect of sediment characteristics for predicting erosion on Francis turbines blades. International Journal on Hydropower and Dams, 19(1), 79-83.
Oka, Y. I., Okamura, K., & Yoshida, T. (2005). Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation.
Wear,
259(1–6), 95–101.
https://doi.org/10.1016/J.wear.2005.01.039
Pradhan, P. M. S. (2004). Improving sediment handling in the Himalayas. OSH research, Nepal, 1-6.
Prashar, G., Vasudev, H., & Thakur, L. (2020). Performance of different coating materials against slurry erosion failure in hydrodynamic turbines: A review. In Engineering Failure Analysis (Vol. 115). Elsevier Ltd.
https://doi.org/10.1016/j.engfailanal.2020.104622
Rai, A. K., & Kumar, A. (2017). Sediment monitoring for hydro-abrasive erosion: A field study from Himalayas, India.
International Journal of Fluid Machinery and Systems, 10(2), 146–153.
https://doi.org/10.5293/IJFMS.2017.10.2.146
Rajkarnikar, B., Neopane, H. P., & Thapa, B. S. (2013). Development of rotating disc apparatus for test of sediment-induced erosion in francis runner blades.
Wear,
306(1–2), 119–125.
https://doi.org/10.1016/j.wear.2013.07.011
Rakibuzzaman, M., Kim, H. H., Kim, K., Suh, S. H., & Kim, K. Y. (2019). Numerical study of sediment erosion analysis in Francis turbine.
Sustainability (Switzerland),
11(5).
https://doi.org/10.3390/su11051423
Reichardt, H. (1951). Vollständige darstellung der turbulenten geschwindigkeitsverteilung in glatten leitungen.
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik,
31(7), 208–219.
https://doi.org/10.1002/zamm.19510310704
Sadrehaghighi, I., Smith, R., & Tiwari, S. (1992, January 6).
An analytical approach to grid sensitivity analysis. 30th Aerospace Sciences Meeting and Exhibit.
https://doi.org/10.2514/6.1992-660
Shahsavari, A., & Akbari, M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions.
Renewable and Sustainable Energy Reviews,
90, 275–291.
https://doi.org/10.1016/j.rser.2018.03.065
Silva, R., Cotas, C., Garcia, F. A. P., Faia, P. M., & Rasteiro, M. G. (2015). Particle distribution studies in highly concentrated solid-liquid flows in pipe using the mixture model.
Procedia Engineering,
102, 1016–1025.
https://doi.org/10.1016/j.proeng.2015.01.224
Singh, M., Banerjee, J., Patel, P. L., & Tiwari, H. (2013). Effect of silt erosion on francis turbine: A case study of maneri bhali stage-II, Uttarakhand, India.
ISH Journal of Hydraulic Engineering,
19(1), 1–10.
https://doi.org/10.1080/09715010.2012.738507
Singh, V., Kumar, S., & Mohapatra, S. K. (2019). Modeling of erosion wear of sand water slurry flow through pipe bend using CFD.
Journal of Applied Fluid Mechanics,
12(3), 679–687.
https://doi.org/10.29252/jafm.12.03.29199
Teran, L. A., Roa, C. V., Muñoz-Cubillos, J., Aponte, R. D., Valdes, J., Larrahondo, F., Rodríguez, S. A., & Coronado, J. J. (2016). Failure analysis of a run-of-the-river hydroelectric power plant.
Engineering Failure Analysis,
68, 87–100.
https://doi.org/10.1016/j.engfailanal.2016.05.035
Thapa, B. S., Dahlhaug, O. G., & Thapa, B. (2015). Sediment erosion in hydro turbines and its effect on the flow around guide vanes of Francis turbine.
Renewable and Sustainable Energy Reviews,
49, 1100–1113.
https://doi.org/10.1016/J.RSER.2015.04.178
Thapa, B. S., Thapa, B., Eltvik, M., Gjosater, K., & Dahlhaug, O. G. (2012).
Optimizing runner blade profile of Francis turbine to minimize sediment erosion. IOP Conference Series: Earth and Environmental Science, 15(PART 3).
https://doi.org/10.1088/1755-1315/15/3/032052
Vieira, R. E., Mansouri, A., McLaury, B. S., & Shirazi, S. A. (2016). Experimental and computational study of erosion in elbows due to sand particles in air flow.
Powder Technology,
288, 339–353.
https://doi.org/10.1016/J.Powtec.2015.11.028
Zhang, Y., Reuterfors, E. P., McLaury, B. S., Shirazi, S. A., & Rybicki, E. F. (2007). Comparison of computed and measured particle velocities and erosion in water and air flows.
Wear,
263(1–6), 330–338.
https://doi.org/10.1016/J.wear.2006.12.048
Zolfagharnasab, M. H., Salimi, M., Zolfagharnasab, H., Alimoradi, H., Shams, M., & Aghanajafi, C. (2021). A novel numerical investigation of erosion wear over various 90-degree elbow duct sections.
Powder Technology,
380, 1–17.
https://doi.org/10.1016/j.powtec.2020.11.059