Multiphase Flow Simulations to Explore Novel Technique of Air Injection to Mitigate Silt Erosion in Hydro Turbines

Document Type : Regular Article

Authors

Multi Phase Flow Laboratory, Mechanical Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand, India

10.47176/jafm.18.2.2735

Abstract

Hydropower is increasingly recognized as a sustainable energy source due to its minimal environmental impact, a crucial factor in meeting global energy demands. However, the efficiency of hydropower plants (particularly in the Himalayan region) can be hampered by wear and tear of essential components like hydroturbine blades, runners, guide vanes, and nozzles, caused by silt particles in water streams. This study proposes an innovative solution to mitigate silt erosion by implementing a partial air shield on the pressure surface of hydrofoils. Through numerical simulations, the study investigates the interaction between quartz particle-water suspension and injected air on a NACA 4412 hydrofoil. The Euler-Euler-Lagrange model combined with the K-omega SST turbulence scheme is observed to accurately predict erosion wear behavior with and without air injection. The investigation reveals two significant phases. Initially, a comparison between scenarios with and without air injection shows a noticeable reduction in erosion rate when air is introduced over the surface. To further illustrate this reduction, the study increases the silt suspension levels from 2500 ppm to 5000 ppm and the air injection speed from 7.5 m/s to 17.5 m/s, while maintaining a constant hydrofoil angle of attack at 10° and an air-injection angle of 30°. In the subsequent phase, detailed exploration of various air injection parameters reveals an inverse relationship between air injection speed and erosion rate. This study provides comprehensive data sheets illustrating results for different parameter ranges, suggesting that air entrainment on hydroturbine runners can effectively reduce wear due to silt.

Keywords

Main Subjects


Acharya, N., Trivedi, C., Wahl, N. M., Gautam, S., Chitrakar, S., & Dahlhaug, O. G. (2019). Numerical study of sediment erosion in guide vanes of a high head Francis turbine. Journal of Physics: Conference Series, 1266(1). https://doi.org/10.1088/1742-6596/1266/1/012004
Arabnejad, H., Mansouri, A., Shirazi, S. A., & McLaury, B. S. (2015, September 28). Evaluation of solid particle erosion equations and models for oil and gas industry applications. Day 2 Tue, September 29, 2015. https://doi.org/10.2118/174987-MS
Arndt, R. E. A., & Ellis, C. R. (1993). investigation of the use of air injection to mitigate·cavitation erosion.
Bahadur, S., & Badruddin, R. (1990). Erodent particle characterization and the effect of particle size and shape on erosion. Wear, 138(1–2), 189–208. https://doi.org/10.1016/0043-1648(90)90176-B
Bishwakarma, M. B., & Støle, H. (2008). Real-time sediment monitoring in hydropower plants. Journal of Hydraulic Research, 46(2), 282–288. https://doi.org/10.1080/00221686.2008.9521862
Bogey, C. (2018). Grid sensitivity of flow field and noise of high-Reynolds-number jets computed by large-eddy simulation. International Journal of Aeroacoustics, 17(4–5), 399–424. https://doi.org/10.1177/1475472X18778287
Bunea, F., Bucur, D. M., Ciocan, G. D., & Dunca, G. (2014). Aeration solution of water used by hydraulic turbines to respect the environmental policies. 2014 International Conference and Exposition on Electrical and Power Engineering (EPE), 1015–1020. https://doi.org/10.1109/ICEPE.2014.6970062
Devolder, B., Rauwoens, P., & Troch, P. (2017). Application of a buoyancy-modified k-ω SST turbulence model to simulate wave run-up around a monopile subjected to regular waves using OpenFOAM®. Coastal Engineering, 125, 81–94. https://doi.org/10.1016/j.coastaleng.2017.04.004
Dhiman, P., Bhat, A., & Karn, A. (2022, October). The Efficacy of Air Injection in Mitigating Silt Erosion on Hydroturbine Blades: A Computational Study. In International Conference on Hydro and Renewable Energy (pp. 437-444). Singapore: Springer Nature Singapore.
Dhiman, P., Singh, V. P., & Karn, A. (2024). Experimental and computational analysis of air injection as a mitigation technique for silt erosion in hydro turbines. Renewable Energy and Sustainable Development, 10(2), 345. https://doi.org/10.21622/resd.2024.10.
Ducoin, A., & Young, Y. L. (2013). Hydroelastic response and stability of a hydrofoil in viscous flow. Journal of Fluids and Structures, 38, 40–57. https://doi.org/10.1016/j.jfluidstructs.2012.12.011
Finnie, I. (1960). Erosion of surfaces by solid particles. Wear, 3(2), 87–103. https://doi.org/10.1016/0043-1648(60)90055-7
Forder, A., Thew, M., & Harrison, D. (1998). A numerical investigation of solid particle erosion experienced within oilfield control valves. Wear, 216(2), 184–193. https://doi.org/10.1016/S0043-1648(97)00217-2
Goodwin, J. E., Sage, W., & Tilly, G. P. (1969). Study of erosion by solid particles. Proceedings of the Institution of Mechanical Engineers, 184(1), 279–292. https://doi.org/10.1243/PIME_PROC_1969_184_024_02
Grant, G., & Tabakoff, W. (1975). Erosion prediction in turbomachinery resulting from environmental solid particles. Journal of Aircraft, 12(5), 471–478. https://doi.org/10.2514/3.59826
Hua, H., Zeng, Y. Z., Wang, H. Y., Ou, S. B., Zhang, Z. Z., & Liu, X. B. (2015). Numerical analysis of solid-liquid two-phase turbulent flow in Francis turbine runner with splitter blades in sandy water. Advances in Mechanical Engineering, 7(3), 1–10. https://doi.org/10.1177/1687814015573821
Johansson, M. (2012). Evaluation of RANS turbulence models for the hydrodynamic analysis of an axisymmetric streamlined body with special consideration of the velocity distribution in the stern region.
Kang, M. W., Park, N., & Suh, S. H. (2016). Numerical study on sediment erosion of francis turbine with different operating conditions and sediment inflow rates. Procedia Engineering, 157, 457–464. https://doi.org/10.1016/J.PROENG.2016.08.389
Karunarathne, S. S., & Tokheim, L. A. (2017). Comparison of the influence of drag models in CFD simulation of particle mixing and segregation in a rotating cylinder. 151–156. https://doi.org/10.3384/ecp17138151
Kaufmann, A. (2004). Towards the simulation of large scales in Euler-Euler formulation of two-phase reactive flows (Doctoral dissertation, Toulouse, INPT).
Klajbár, C., & Könözsy, L. (2016). Multiphase eulerian simulations of a sedimentation process in a solid-fluid particle-laden flow.
Koomullil, R., Soni, B., & Singh, R. (2008). A comprehensive generalized mesh system for CFD applications. Mathematics and Computers in Simulation, 78(5–6), 605–617. https://doi.org/10.1016/j.matcom.2008.04.005
Li, Y., Zhang, H., Lin, Z., He, Z., Xiang, J., & Su, X. (2019). Relationship between wear formation and large-particle motion in a pipe bend. Royal Society Open Science, 6(1), 181254. https://doi.org/10.1098/rsos.181254
Lote, D. A., Vinod, V., & Patwardhan, A. W. (2018). Comparison of models for drag and non-drag forces for gas-liquid two-phase bubbly flow. Multiphase Science and Technology, 30(1), 31–76. https://doi.org/10.1615/MultScienTechn.2018025983
Mansouri, A., Arabnejad, H., Shirazi, S. A., & McLaury, B. S. (2015). A combined CFD/experimental methodology for erosion prediction. Wear, 332–333, 1090–1097. https://doi.org/10.1016/J.wear.2014.11.025
Masoodi, J. H., & Harmain, G. A. (2017). Sediment erosion of Francis turbine runners in the Himalayan region of India. International Journal on Hydropower and Dams, 24, 82-89.
McLaury, B. A., Shirazi, S. A., Shadley, J. R., & Rybicki, E. F. (1995). Parameters affecting flow accelerated erosion and erosion-corrosion. NACE International, Houston, TX (United States). https://www.osti.gov/biblio/106121
Morsi, S. A., & Alexander, A. J. (1972). An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics, 55(02), 193. https://doi.org/10.1017/S0022112072001806
Neopane, H. P., Dahlhaug, O. G., & Cervantes, M. J. (2012). The effect of sediment characteristics for predicting erosion on Francis turbines blades. International Journal on Hydropower and Dams, 19(1), 79-83.
Oka, Y. I., Okamura, K., & Yoshida, T. (2005). Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation. Wear, 259(1–6), 95–101. https://doi.org/10.1016/J.wear.2005.01.039
Padhy, M. K., & Saini, R. P. (2008). A review on silt erosion in hydro turbines. Renewable and Sustainable Energy Reviews, 12(7), 1974–1987. https://doi.org/10.1016/j.rser.2007.01.025
Peng, W., & Cao, X. (2016). Numerical simulation of solid particle erosion in pipe bends for liquid-solid flow. Powder Technology, 294, 266–279. https://doi.org/10.1016/j.powtec.2016.02.030
Pradhan, P. M. S. (2004). Improving sediment handling in the Himalayas. OSH research, Nepal, 1-6.
Prashar, G., Vasudev, H., & Thakur, L. (2020). Performance of different coating materials against slurry erosion failure in hydrodynamic turbines: A review. In Engineering Failure Analysis (Vol. 115). Elsevier Ltd. https://doi.org/10.1016/j.engfailanal.2020.104622
Rai, A. K., & Kumar, A. (2017). Sediment monitoring for hydro-abrasive erosion: A field study from Himalayas, India. International Journal of Fluid Machinery and Systems, 10(2), 146–153. https://doi.org/10.5293/IJFMS.2017.10.2.146
Rajkarnikar, B., Neopane, H. P., & Thapa, B. S. (2013). Development of rotating disc apparatus for test of sediment-induced erosion in francis runner blades. Wear, 306(1–2), 119–125. https://doi.org/10.1016/j.wear.2013.07.011
Rakibuzzaman, M., Kim, H. H., Kim, K., Suh, S. H., & Kim, K. Y. (2019). Numerical study of sediment erosion analysis in Francis turbine. Sustainability (Switzerland), 11(5). https://doi.org/10.3390/su11051423
Reichardt, H. (1951). Vollständige darstellung der turbulenten geschwindigkeitsverteilung in glatten leitungen. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 31(7), 208–219. https://doi.org/10.1002/zamm.19510310704
Sadrehaghighi, I., Smith, R., & Tiwari, S. (1992, January 6). An analytical approach to grid sensitivity analysis. 30th Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.1992-660
Sangal, S., Singhal, M. K., & Saini, R. P. (2018). Hydro-abrasive erosion in hydro turbines: a review. In International Journal of Green Energy, 15(4), 232–253. https://doi.org/10.1080/15435075.2018.1431546
Shahsavari, A., & Akbari, M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews, 90, 275–291. https://doi.org/10.1016/j.rser.2018.03.065
Silva, R., Cotas, C., Garcia, F. A. P., Faia, P. M., & Rasteiro, M. G. (2015). Particle distribution studies in highly concentrated solid-liquid flows in pipe using the mixture model. Procedia Engineering, 102, 1016–1025. https://doi.org/10.1016/j.proeng.2015.01.224
Singh, G., & Kumar, A. (2016). Performance evaluation of desilting basins of small hydropower projects. ISH Journal of Hydraulic Engineering, 22(2), 135–141. https://doi.org/10.1080/09715010.2015.1094750
Singh, M., Banerjee, J., Patel, P. L., & Tiwari, H. (2013). Effect of silt erosion on francis turbine: A case study of maneri bhali stage-II, Uttarakhand, India. ISH Journal of Hydraulic Engineering, 19(1), 1–10. https://doi.org/10.1080/09715010.2012.738507
Singh, V., Kumar, S., & Mohapatra, S. K. (2019). Modeling of erosion wear of sand water slurry flow through pipe bend using CFD. Journal of Applied Fluid Mechanics, 12(3), 679–687. https://doi.org/10.29252/jafm.12.03.29199
Teran, L. A., Roa, C. V., Muñoz-Cubillos, J., Aponte, R. D., Valdes, J., Larrahondo, F., Rodríguez, S. A., & Coronado, J. J. (2016). Failure analysis of a run-of-the-river hydroelectric power plant. Engineering Failure Analysis, 68, 87–100. https://doi.org/10.1016/j.engfailanal.2016.05.035
Thapa, B. S., Dahlhaug, O. G., & Thapa, B. (2015). Sediment erosion in hydro turbines and its effect on the flow around guide vanes of Francis turbine. Renewable and Sustainable Energy Reviews, 49, 1100–1113. https://doi.org/10.1016/J.RSER.2015.04.178
Thapa, B. S., Thapa, B., Eltvik, M., Gjosater, K., & Dahlhaug, O. G. (2012). Optimizing runner blade profile of Francis turbine to minimize sediment erosion. IOP Conference Series: Earth and Environmental Science, 15(PART 3). https://doi.org/10.1088/1755-1315/15/3/032052
Truscott, G. F. (1972). A literature survey on abrasive wear in hydraulic machinery. Wear, 20(1), 29–50. https://doi.org/10.1016/0043-1648(72)90285-2
Vieira, R. E., Mansouri, A., McLaury, B. S., & Shirazi, S. A. (2016). Experimental and computational study of erosion in elbows due to sand particles in air flow. Powder Technology, 288, 339–353. https://doi.org/10.1016/J.Powtec.2015.11.028
Zhang, Y., Reuterfors, E. P., McLaury, B. S., Shirazi, S. A., & Rybicki, E. F. (2007). Comparison of computed and measured particle velocities and erosion in water and air flows. Wear, 263(1–6), 330–338. https://doi.org/10.1016/J.wear.2006.12.048
Zolfagharnasab, M. H., Salimi, M., Zolfagharnasab, H., Alimoradi, H., Shams, M., & Aghanajafi, C. (2021). A novel numerical investigation of erosion wear over various 90-degree elbow duct sections. Powder Technology, 380, 1–17. https://doi.org/10.1016/j.powtec.2020.11.059