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ABSTRACT 

The goal of this research is to redesign the three-dimensional geometry of a 

micro horizontal-axis wind turbine blade using response surface methodology. 

The variation of the two influential design parameters, chord length and twist 

angle, along the blade is geometrically modelled using a fourth- and second- 

degree polynomial, respectively. Therefore, the optimization process is 

performed basing on eight input parameters that describe the initial blade design. 

The performance of the initial and the new optimized wind turbine are compared 

using CFD and BEM approaches. To well study fluid flow through the wind 

turbine and assess its performance, the CFD analysis step is carried out using the 

RANS equations with the k-ω SST turbulence model. Concerning the 

optimization step, The MOGA (Multi-Objective-Genetic Algorithm) method is 

employed in an automated manner based on a metamodel with non-parametric 

regression NPR to identify the best candidate with high efficiency. The 

performance of turbine rotor types is analyzed using the open source Qblade 

software and compared with CFD methodology for different TSR (Tip Speed 

Ratio) values. An increase of 14.65% and 17.17% in power coefficient is marked 

for CFD and Qblade, respectively, at the design TSR of 3. Compared to the 

initial blade, the optimal one produces more lift, has a lower separation area, and 

performs significantly better performance at all TSR values. The detailed 

representation of 3D flow via pressure distribution and limiting streamlines on 

both blade surfaces confirm the optimization target which leads to reduce 

separation zones and improve rotor torque. Additionally, a 37% improvement in 

starting operability at the lowest wind speed is achieved compared to the initial 

rotor. 
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1. INTRODUCTION 

 Although changes in political and social conditions 

have boosted renewable energy growth in recent decades, 

the current energy system is primarily reliant on fossil 

fuels. In fact, wind source is an important renewable 

energy with its vast reserves over the entire terrestrial 

globe and it is still far from reaching its full potential. 

Therefore, the use of wind turbines necessities 

aerodynamic design to extract optimal wind power. In this 

context, numerous works of literature have used the blade 

element momentum approach, which was established 

originally for Aeroplan propellers (Glauert, 1976), for the 

design and performance computation of the blades. To 

assess wind turbine performance, both momentum and 

blade element theories are coupled. Using these theories, 

several researchers have predicted Wind turbine 

performance (Ceyhan et al., 2009; Kim et al., 2011, 2013; 

Reddy et al., 2019; Sessarego et al., 2020; Tahani and 

Moradi, 2016).  

 Furthermore, the CFD analysis with a suitable 

turbulence model is one of the most extensively used 

methodologies for evaluating wind turbine performance. 

Pape and Lecanu (2004) used the k - ω SST turbulence 

model to evaluate the aerodynamic performance of a 

NREL wind turbine, and the results are in good agreement 

with the experiment results at low speeds. Lanzafame et 

al. (2013) created a 3D CFD model to predict the 

performance of a micro HAWT and assess the capabilities 

of the 1D BEM model. Using NREL PHASE 4 

experimental data, two turbulence models, two equations 

SST k-ω fully turbulent and four equations transitional 

SST models, were employed, compared, and verified. The 

difference between simulated and experimental results 

was less than 6%. To enhance the blade root region and 

increase the efficiency of the wind turbine, (Bai et al., 

2016) proposed a mathematical model to evaluate the lift 

and drag coefficient for different airfoil profiles. A 

comparative analysis between both approaches CFD and 

BEM was carried out. Using k-ω SST turbulence model, 
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a good agreement between the two methods was found. 

Rajib et al. (2019) presented a numerical study with CFD 

and Qblade software to explore the performance of mixed 

airfoil small scale horizontal axis wind turbine blades. 

After selecting two airfoil profiles SG 6040 and SG 6043 

at the root and tip region, respectively, the obtained results 

using the k- ω SST turbulent model in the CFD tool show 

a good performance. Casillas et al. (2022) proposed a new 

prototype of the induction blade (IB) which was designed 

using BEM theory. The CFD analyzer was also used to 

evaluate the aerodynamic properties with the turbulent 

model k-ω SST. The studied (IB) model provides 65% 

extra torque compared with a conventional blade which 

was designed using BEM theory. In the field of enhancing 

blade efficiency, most of the previous works have 

concentrated on passive aerodynamic optimization based 

on the classical approach which leads to an optimal blade 

design through a series of iterations with high cost in term 

of time and computational resources. In the modern 

methods, the optimization requires a simple design 

scheme with many design parameters to obtain an 

optimum aerodynamic design at an early stage of the 

design process, as well as to correlate significant design 

factors. One of these modern methods is the response 

surface methodology (RSM) which represents a statistical 

technique used to investigate the relationship between 

numerous design variables and one or more response 

variables. Benim et al. (2018) optimized an airfoil profile 

for a small horizontal-axis wind turbine using RSM 

methodology based on computational fluid dynamics with 

Biobjective Mesh Adaptive Direct Search Optimization 

algorithm (BMADSO). The results demonstrated that this 

procedure can be an effective tool for optimizing the shape 

of the blade. Sun (2011) proposed a parametric study   to 

investigate the effect of design factors with varying 

nominal angles of attack and assess the airfoil 

performance.  Therefore, the   response   surface method 

(RSM) was used to find the best design based on the 

objective functions (minimum drag coefficient or a 

maximum lift-to-drag ratio) and constrains (the lift 

coefficient of a designed airfoil is higher than that of a 

base airfoil at a certain angle of attack). It was found that 

the RSM methodology can be effective for improving the 

aerodynamic characteristics of wind turbine airfoils. In 

The study of (Tabatabaeikia et al., 2016), the response 

surface approach was employed to enhance statistical 

procedures. The generated power coefficient is used as an 

objective function in the optimization process. The 

turbulence phenomena were modelled with the k-ω SST, 

and the simulation results were validated with 

experimental data, which revealed a small variation of less 

than 9 %. It also showed that the optimization method led 

to a 48.8 % increase in wind turbine power compared to 

the initial design. Hung et al. (2016) proposed a design for 

a counter-rotating horizontal axis tidal turbine (HATT) 

using BEM method which fails to forecast the interaction 

between the two rotors. CFD tool was used to compensate 

this BEM failure. A second order RSM was utilized to 

identify the best setting angles for both front and rear rotor 

blades. Wind tunnel test was conducted to validate the 

CFD results. The numerical model was validated via wind 

tunnel measurements. The optimal configuration leads to 

a high performance for all TSRs. Li et al. (2010) applied 

an aerodynamic optimization strategy for 2-D wind 

turbine airfoil which is based on a combination of RSM 

method and uniform experimental design. This technique 

maximizes the airfoil lift-to-drag ratio at the design angle 

of attack. Another approach, used in the optimization 

field, tries to discover combinations of the main design 

parameters, and find the best one. This approach become 

a robust tool to reach the optimization goal with high 

accuracy and short computational time. Lee and Shin 

(2020) used combined input parameters methodology for 

designing wind turbine blades with a maximum efficiency 

increase of 8% using a second order RSM coupled with 

BEM on Minitab software. Zhou et al. (2020) studied the 

performance of the Inertia Particle Separator (IPS), which 

has been enhanced using the interaction between input 

parameters through RSM method. The IPS separation 

efficiency on AC-Coarse dust is increased by 3.8%. In the 

research paper of (Aelaei et al., 2019), the effect of mixing 

input parameters on delta wing performance was explored 

using optimization technique NSGA-II (Non-dominated 

Sorted Genetic Algorithm-II) coupling with the RSM 

method. Based on the CFD analyzer and the optimization 

methodology, the aerodynamic efficiency was increased 

by 50% compared to the initial wing. Therefore, the 

highest angle of attack at Mach number 1.2 was chosen as 

the best design point for the vehicle. Dual-rotor wind 

turbine was studied by Taghinezhad et al. (2021) to 

improve its performance using the RSM methodology. 

The different operating conditions extracted for this type 

Nomenclature 

P output power  𝜎 solidity 

V wind speed  𝜑 inflow angle 

B number of blades  𝜆𝑟 local tip speed ratio 

𝐶𝑝 power coefficient  𝛽 twist angle 

𝐶𝐿 lift coefficient  RSM Response Surface Method 

𝐶𝐷 drag coefficient  CCD Centre Composite Design 

𝐶𝐿 𝐶𝐷⁄  glide ratio  DOE Design Of Experiment 

C chord length  TSR Tip Speed Ratio 

𝐶𝑛 normal force coefficient   HAWT Horizontal Axis Wind Turbine 

𝐶𝑡 tangential force coefficient   VAWT Vertical Axis Wind Turbine 

Htr hub tip ratio  MOGA Multi-Objective -Genetic Algorithm 

Q torque  RANS Reynolds Averaged Naiver Stokes 

𝜔 rotational speed  MRF Moving Reference Frame Model 

𝛼𝐷 design angle of attack  R2                                 coefficient of correlation  
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of turbine were also compared and the results showed a 

maximum power ratio of about 55% in the optimal 

conditions. Moreover, the power ratio of the studied 

model agreed well with the experimental data. The 

objective of the work conducted by Akhlaghi et al. (2023) 

was to investigate the effect of each design parameter on 

the performance and self-starting ability of the Darries 

VAHT. Therefore, using Kringing optimization method 

leads to obtain optimum configuration with a blended 

input parameters strategy. In additionally relying on RSM 

methodology 10% increase in performance at optimal 

TSR was obtained.  

Despite the high accuracy offered by the deep 

learning approach, the former requires extensive training 

data, which raises; costs and defeats the purpose of 

optimization. This shortcoming, the deep learning method 

could be avoided by selecting the robust surrogate model 

to achieve an optimal design. Several studies have been 

proposed to support the advantages of using the surrogate 

model. Yang et al. (2023) proposed an improved Gaussian 

process regression (GPR) model, adding an enhanced 

kernel construction algorithm (AKC), for the accurate 

prediction of dynamic parameters. The combined model 

AKC-GPR shown exceptional accuracy, establishing 

itself as a reliable and robust surrogate for predictive 

modeling. Yang et al. (2024a) introduced a robust method 

coupling proper orthogonal decomposition (POD) with a 

surrogate model via the AKC-GPR algorithm. This 

approach enhances the aerodynamic configuration of 

UAV-BWB vehicle by reducing geometric parameters. 

Consequently, CFD results demonstrated a 14 % increase 

in the lift-to-drag ratio for the optimal design compared to 

the initial one. Yang et al. (2024b) implemented a 

reduced- order model (ROM) for quick 3D hypersonic 

vehicle flow. With this enhanced model AKC-GPR, a 

reduction of 35.28 % in the mean absolute percentage 

error (MAPE) was compared the baseline model. 

 In the present study, an investigation based on an 

optimization procedure was performed to improve the 

performance of micro wind turbine using the RSM 

methodology based on CFD Analyzer and Qblade 

Software. A metamodel with non-parametric regression 

NPR coupling with the MOGA method was used to 

provide an enhanced response. In this regard, the input 

parameters were chosen with high efficiency to describe 

both chord length and twist angle distribution along the 

blade through polynomial functions with eight parameters 

based on the initial blade geometry. Compared to the 

previous research work (Bekkai et al., 2024), experimental 

data was added to confirm the accuracy of numerical 

approach with selecting the powerful polyhedral mesh 

type and using the best aerodynamic profile SG 6043. 

Furthermore, the torque assessment at different speeds 

leads to an improvement in the starting operate ability at 

the lowest wind speed compared to the initial rotor.   

2. WIND TURBINE BLADE DESCRIPTION 

2.1 Aerodynamic Characteristics Analysis of Airfoil 

The SG6043 is an element of the SG604x airfoil 

family, which is well known for its outstanding 

aerodynamic characteristics at low Reynolds numbers 

(Shin & Kim, 2020). Figure 1 shows the airfoil profile. 

The relative geometric proprieties of the airfoil section; 

maximum thickness, camber and leading-edge radius have 

the following values 10%, 5.5% and 1.7%, respectively. 

The glide ratio Cl/Cd variation with respect to the angle of 

attack of the SG6043 airfoil at Re=4×104 is illustrated in 

Fig. 2. In this part, the open 2D software Xfoil is used to 

calculate the aerodynamic properties of the airfoil (Drela, 

2001). Therefore, the obtained ranges of the glide ratio and 

the angle of attack are limited between [0, 5] and [-1, 16], 

respectively, with the design value of the angle of attack 

equals to 10°. 

2.2 Blade Design 

The initial turbine rotor is identified with blades 

number B=3, rotor diameter D=0.6m, hub tip ratio 

htr=0.1, and design tip speed ratio TSR=3. Using the 

Schmitz approach (Marten & Wendler, 2013), the wind 

turbine blade design is determined by the distribution of 

both chord length and twist angle along the blade span, as 

shown in the following equations: 

𝛽 =
2

3
𝑡𝑎𝑛−1 (

1

𝜆𝑟
) − 𝛼𝐷                                                   (1) 

𝐶 =
16𝜋𝑟

𝐵𝐶𝐿
(sin(

1

3
tan−1 1

𝜆𝑟
))2                                           (2) 

In the analysis step, the Blade Element Momentum 

method (BEM) in which two theories are blended: 

momentum theory and blade element theory, is employed. 

This method concerns with the responsible force for 

producing rotor motion through fluid flow. The Wind 

 

 
Fig. 1 Airfoil section shape for SG6043      
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Fig. 2 Aerodynamic Characteristics of SG6043 at 

Re=4×104 
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turbine blade is divided into small blade sections, and the 

conservation of linear and angular momentum was applied 

to all segments of the blade, resulting in the calculation of 

forces and power. The induction factors and airfoil 

aerodynamic characteristics are the two main keys in 

BEM theory. This latter (Marten & Wendler, 2013) was 

analyzed using the open-source Software Qblade, where 

the entire blade is divided into 40 small elements. The lift 

and drag coefficients are calculated for each element of the 

blade iteratively until the induction factors are expected to 

converge (Sørensen, 2016). The axial and tangential 

induction factors are defined as follows: 

𝑎 = (
4 𝑠𝑖𝑛2 𝜑

𝜎𝐶𝑁
+ 1)

−1

                                                   (3) 

  𝑎′ = (
4 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑 

𝜎𝐶𝑡
− 1)

−1

                                             (4) 

where φ denotes the inflow angle and Cn and Ct denote 

the tangential and normal force coefficients, respectively. 

The rotor solidity σ is defined by: 

𝜎 =
𝑐𝐵

2𝜋𝑟
                                                                        (5) 

 Where c, B and r represent the chord length, blade 

number, and radial positions of the turbine blade (Hasan 

et al., 2017). In this study, the maximum number of 

iterations was set at 100. After convergence, the 

associated parameters are used to calculate the generated 

power for that specific blade element and this procedure 

was repeated for all blade sections. Several correction 

models, such as, new tip loss, new root loss, 3d correction, 

Reynolds drag correction, and airfoil interpolation, were 

also used in BEM to ensure its accuracy. 

3. GEOMETRY PARAMETRIZATION 

After selecting the optimal tip speed ratio of TSR=3, 

and wind speed of 6 m/s, the distribution of chord length 

and twist angle for initial blade design can be extracted. 

To represent the changes in chord length and twist angle, 

a fitting curve was applied with high efficiency to match 

the initial design. Therefore. Both distributions of chord 

length and twist angle are developed by fourth degree and 

quadratic polynomial fitting, respectively (Zach, 2021), as 

shown in the following equations: 

𝐶(𝑟)  =  𝑎1. 𝑟 4 + 𝑎2. 𝑟3  +  𝑎3. 𝑟 2 +  𝑎4. 𝑟 +  𝑎5        (6) 

𝛽(𝑟)  =  𝑏1. 𝑟2 + 𝑏2. 𝑟 + 𝑏3                                        (7) 

Where r is the radial position along the blade, a1, a2, 

a3, a4, and a5 are coefficients that represent variation in 

chord length along the blade, whereas b1, b2, and b3 are 

coefficients related to the change in twist angle on the 

blade. Figure (3,4). Shows the chord length and twist angle 

distributions after the fitting procedure.  

4. COMPUTATIONAL FLUID DYNAMICS (CFD) 

The studied configuration is based on the geometric 

proprieties summarized in Table 1 with wind speed of 6 

m/s, tip speed ratio of 3 and number of blades  

B=3. Following the main steps of the CFD procedure, the  
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Fig. 3 chord length distribution with fitting curve 
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Fig. 4 Twist angle distribution with fitting curve 

 

Table 1 Geometry specification of fluid domain 

with blade 

Geometric Specification Value 

Blade Radius 0.3 m 

Hub Radius 0.03 m 

Inlet velocity Radius 3 m 

Exit velocity Radius 6 m 

 

geometry construction, grid generation, and governing 

equation solving, are illustrated in the following 

paragraphs. 

4.1 The Geometry of the Fluid Domain with the Blade 

 The geometry domain is represented by a truncated 

cone with an inlet at the small base and an outlet at a big 

base. To minimize the number of cells simulation, a third 

of the domain including one blade is considered, Fig. 5. 

The blade is located inside the domain, with both upstream 

and downstream distances equal to 10 and 20 times the 

rotor radius to predict the relevant phenomena such as the 

wake region (Hasan et al.,2017).  
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Table 2 Mesh - Independency 

Element size on the blade 

surface (m) 
Number of cells (polyhedral) Torque value (N.m) 

Performance of 

Turbine 

0.0005 2.7 million 0.081 0.38 

0.0008 1.1 million 0.08005 0.38 

0.001 0.86 million 0.08 0.38 

0.0015 0.8 million 0.07 0.37 

 

 

Fig. 5 Illustration of the fluid domain 

 

 

Fig. 6 discretization of the fluid domain with a fifteen 

-layers inflation 

 

4.2 Computation Grid 

The constructed geometric domain is discretization 

using two kinds of meshes: polyhedral and tetrahedral, Fig 

(6 and 7). The former is used to improve the latter in both 

accuracy and number of cells (Mauro et al., 2017). The 

grid solution independence is carried out to choose the 

most convenient mesh. Therefore, in Table 2, the output 

results reach a constant value of 0.38 and 0.08 for the mesh 

identified by 0.86 million cells. Moreover, a 15-layer 

inflation was also formed near the blade wall, with a 

calculated y+ on the blade surface of less than 10 (Koç et 

al., 2016). With a growth rate of 1.2, the height of the first 

neighboring wall cells is almost 1.410-5 m which is 

estimated using the y+ calculator website with the 

following formula: 

y+ = w ∆y ρ / µ                                                           (8) 

Where w, ∆y, ρ and µ are relative velocity, the 

thickness of the first layer, air density and dynamic 

viscosity, respectively. 

Figure 8 also shows the distribution of y+ around the 

blades for the selected mesh. The maximum value of y+  

 

Fig. 7 discretization of the blade domain and 

boundary condition 

 

 

Fig. 8 y+ distribution around the blades 

 

equals 1.45 in the tip region, it can be also noted that the 

leading and trailing edges of the blade maintain a value of 

y+ close to 1. 

4.3 CFD Solver and Boundary Conditions 

The commercial software Ansys-Fluent is the CFD 

tool based on the finite volume method and is used in this 

work to model numerically the wind turbine aerodynamic 

performance. The Shear-Stress Transport (SST) k-ω 

turbulent model for the Reynolds-averaged Navier-Stokes 

(RANS) equations were employed in the CFD 

investigation. The SST turbulence model combines and 

includes a smooth transition between the k-ε and k-ω 

turbulence models; k- ω delivers better compromises near 

the wall, while k- ε provides a better solution in the bulk 

domain (Menter et al., 2003). In addition, second-order 

upwind discretization was applied in space. During the  
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iterative process, the convergence rate was determined 

using the residuals of the dependent variable of the 

governing differential equations with 10-5 of accuracy. 

The boundary conditions for the domain are defined 

as “velocity inlet “at the small base and lateral face of the 

cone. The "pressure outlet" is defined at the big cone base. 

Whereas the remained faces are considered as periodic as 

seen in Fig. 7. Moreover, the Moving Reference Frame 

Model (MRF) was employed to provide blade rotation by 

selecting angular velocity ω =60 rad/s. 

4.4 Numerical Approach Validation  

To validation the numerical approach with 

experimental data, the results in the work of (Khaled, et 

al., 2019) were used. This analysis was conducted using a 

wind turbine rotor with a diameter of 0.7m at design wind 

speed of 6m/s. three blades and hub tip ratio of 10% 

identify the rotor. The aerodynamic blade geometry is 

characterized by NACA 4412 airfoil section with chord 

length and twist angle varied from 0.003 m and 1.7° at 

blade tip to 0.068 m and 36.44° at blade root, respectively. 

The rotor was tested in a low speed wind tunnel 

facility at Ain Shams University in Egypt. This validation 

is carried out maintaining the same flow domain 

dimension and the same mesh characteristics with a 

skewness factor less than 0.85 and k-ω SST turbulent 

model. Comparison between both numerical and 

experimental results shows a good agreement and leads to 

 

a well reliability permitting the using of the numerical 

approach, Fig 9. The peak power coefficient is predicted 

numerically at TSR=5 with almost the value of 0.435, 

while it is equal 0.432 experimentally.  

To estimate numerical results accuracy, the 

correlation coefficient R2 is examined through the 

following statistical equations (Maindonald, and Braun 

2010):  

𝑅2 = 1 −
∑(𝜑𝑒𝑥𝑝−𝜑𝑝𝑟𝑒𝑑)2

∑(𝜑𝑒𝑥𝑝−𝜑𝑒𝑥𝑝
𝑎𝑣𝑔

)
2                                                      (9) 

Where:  

𝜑𝑒𝑥𝑝
𝑎𝑣𝑔

= (∑ 𝜑𝑒𝑥𝑝)
𝑛

𝑖=1
∕ 𝑛                                                  (10) 

After achieving the correlation coefficient R2 = 0.85 at the 

same CFD parameters used in this study, a good 

convergence between the two approaches results can be 

proven. This allows that the current numerical approach 

can be adopted for all simulations with high accuracy. 

5. GOAL DRIVEN OPTIMIZATION   

The design optimization process is based on the following 

three steps: 

5.1 Design of Experiment (DOE) 

In this step, a test sample of input parameters is 

generated to cover the whole range of these parameters 

with a minimum number of design points. The effect of 

the input parameters on the output ones is revealed by 

keeping the test samples with high efficiency. Moreover, 

the constraints on each input parameter are extended by 

20% for upper and down values, Table 3. The DOE 

technique aims to identify sampling sites in the design 

space in such a way that the space of random input 

parameters is explored in the most efficient manner 

obtaining the required response with the minimum 

possible sampling points (Design Xplorer Documentation, 

2010).   

 Following the development of the test sample in the 

DOE table, the Central Composite Design (CCD) method 

is utilized with a four-level sampling design. The 

optimizer then repeats all the operations done in the initial 

design (drawing, meshing, solving governing equations 

and estimating output parameters) for all design points in 

the DOE table. The preliminary design has been created in 

this investigation and provides a parallel chart of 

parameters for 38 sample points with input parameters, 

Fig. 10. 
 

Table 3 Constraints used in the optimization process 

Input parameters constraints Chord constraints (m) Twist constraints (°) 

-89.57≤a1≤-59.71 - - 

47.7≤a2≤71.6 0.03≤C1≤0.08 20≤ β1≤44 

-19.97≤a3≤-13.3 0.042≤C2≤0.115 17≤ β2≤35 

3.057≤a4≤1.358 0.04≤C3≤0.115 10≤ β3≤32 

0.016≤a5≤0.024 0.035≤C4≤0.11 5≤ β4≤25 

271.192≤b1≤406.788 0.025≤C5≤0.096 3≤ β5≤20 

-265.5≤b2≤-179 0.02≤C6≤0.095 1≤ β6≤13 

33.6≤b3≤50.388 0.01≤C7≤0.09 -3≤ β7≤10 
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Fig. 10 Parallel diagram 

 

 
 

 
 

Fig. 11 goodness-of-fit of the response surface using 

non-parametric regression and the response surface 

of (a1), (b1) on the torque value 

 
5.2 Response Surface 

 In this step, the obtained results from the DOE table 

are used to create a multidimensional correlation which 

will be used to forecast the system response to change the 

input parameters. A metamodel with non-parametric 

regression was used to generate the response surface 

(Design Xplorer Documentation, 2010). This model  

leads to increased response quality and over predicts the  

 
 

Fig. 12 Local sensitivity of the design parameters for 

the torque 

 

nonlinear behavior of the goal functions regarding the 

design parameters. The goodness-of-fit test was used to 

examine the quality of the response surface based on 

simulation values. It should be stated that the response 

surface was produced with great accuracy due to the well-

fitted design points related to the value coefficient of 

determination R2=0.998, as illustrated in Fig. 11. The 

influence of each design parameter on the objective 

function was also investigated using the local sensitivity 

chart. Figure 12 shows that each input parameter affects 

the output torque with different values. It should be 

noticed that the most influential input parameters are a2, a3 

and b2, b3 in both chord and twist expressions, 

respectively. 

5.3 Optimization 

 With the aim to identify the maximum torque value 

from the obtained response surface, a new sample set of 

8000 points is produced in Goal-driven optimization 

process based on The MOGA (Multi- Objective- Genetic 

Algorithm) method. The candidate point with the highest 

torque value is then chosen for optimal chord length and 

twist angle distributions using the best input parameters 

(Table 4). 

 The optimum design candidate is then validated in the 

CFD analysis process (ANSYS FLUENT User’s Guide, 

2010). The detailed optimization steps are illustrated in 

Fig. 13. 

 

Table 4 Optimum input parameters 

Input Parameters Optimum input parameters 

a1 -65.562 

a2 54.498 

a3 -16.605 

a4 1.9704 

a5 0.0208 

b1 331.69 

b2 225.07 

b3 39.812 
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Fig. 13 Design Exploration Algorithm 

 

Table 5 Optimum distribution for both chord and 

twist 

Position (m) Chord Length (m) Twist Angle (°) 

0.03 0.0663 33.35 

0.075 0.096 24.79 

0.12 0.098 17.57 

0.165 0.090 11.7 

0.21 0.079 7.17 

0.255 0.0699 3.98 

0.3 0.057 2.14 

6. RESULT AND DISCUSSION 

6.1 Blade Optimization Targets 

 From Table (4,5), the best chord and twist are derived 

from the optimal input parameters in the current results for 

the new blade. In Fig. 14 and Fig.15, the chord length and 

twist angle distribution are represented in the span-wise 

direction on the blade and a comparison is carried out with 

a 3-D view of HAWTs between optimal and initial design. 

From qualitative of point view, both the initial and optimal 

blade have almost the same geometry; the chord is large at 

the root and narrow at the tip and the blade twisting 

between tip and root maintains the same level. From 

quantitative point of view, the optimal blade design chord 

length is higher than the initial one and the twist angle 

changes weakly between both configurations. 

6.2 Pressure Distribution 

 In the current study, the relative chord length along the 

initial blade is proposed as a reference which allows us to 

examine the evolution of the enhanced blade chord length 

distribution, Fig.16. Based on the static pressure 

distribution results along the blade, the increase in lift 

production on the optimal blade at the station near the root 

region, r/R= 0.20, appears clearly over the entire profile. 

However, the improvement in lift reveals beyond 20% of 

the relative chord in the two sections r/R=0.50 and 

r/R=0.75, with a little drop at the leading edge. On the last 

section near the tip with r/R = 0.9, an increase in lift 

production starts almost from the middle profile; 45% of 

the chord length. It can be noticed that the pressure 

distribution on the suction side is responsible for the lift 

improvement on the optimal blade and the increasing of 

the chord length in all stations compared to the reference  
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Fig. 14 Comparison between optimal and initial 

blades, (a) chord length, (b) twist angle 
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Fig. 15 Comparison of 3D views between optimal and 

initial wind turbines 

 

length participates in delaying the flow separation on the 

improved blade. The obtained results confirm the previous 

discussion related to Fig. 14; the increase in the chord 

length on the optimal blade leads to an increase in the 

torque value. 
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Fig. 16 Pressure distribution comparison between the initial and optimal blade at TSR=3 

 

6.3 Flow Visualization 

Figure 17 compares velocity contours and streamlines 

of the initial and optimal blades at the stations r/R=20, 50, 

75, and 90% in the blade span-wise direction at TSR=3 

and wind speed of 6 m/s. Separation flow can be observed 

along the trailing edge when the angle of attack is close to 

10° which represents the design configuration with a 

maximum glide ratio of the SG 6043 airfoil at a Reynolds 

number of 40.000; based on the maximum chord length. 

The aerodynamic optimization leads to a delay in the 

boundary layer separation zone over the suction side near 

the trailing edge.  It is obvious that, in initial blade, the 

SST turbulent model over-predicted the boundary layer 

separation at trailing edge. To manipulate this separation, 

the design angle of attack αD, should be decreased, 

therefore, the characteristic curve Cl/Cd vs AoA must be 

shifted to the left. This case corresponds to increasing the 

Reynolds number via chord length. Based on velocity 

triangles, the design angle of attack αD decreases with the 

increasing of the chord length. Finally, this confirms the 

optimization effect; the power coefficient is improved 

with increasing of the chord length and decreasing of the 

twist angle. Moreover, it can be observed that local 

velocity increases from the hub to the tip region for both 

blades, which agrees with physical phenomena.  

 Figure 18 represents the development of the limiting 

streamlines with static pressure contours for both blade 

sides to difference between the initial and optimal blades 

appears in the boundary layer separation zone on the 

suction side. In the former, the separation occupies almost 

all the suction sides except a small area near the blade tip. 

In the latter, the detachment zone is delayed with a 

percentage of 75%.  When the TSR increases and reaches 

the value of 4, the flow field is fully attached on the 

optimized suction side and is developed with only slight 

separation occurring at the root and trailing edge. In fact, 

there are two main forces affecting the rotating blade and 

playing an important role in the boundary layer separation, 

the centrifugal forces that produce a span wise pumping 

effect that leads to the deviation of the streamlines in the 

span wise direction towards the tip. On the other hand, 

Coriolis forces, which act in the chord wise direction as a 

favorable pressure gradient tend to delay separation, 

Moreover, in all TSR values the highest-pressure levels 

can be observed along the leading edge of the pressure side 

from r=0.15m to r=0.3m. Meanwhile, on the suction side, 

the lowest pressure distribution on the suction side was 

observed at the leading edge between r=0.2m and r=0.3m. 

Therefore, the pressure difference between suction and 

pressure surfaces in the tip region is the first responsible 

generating the torque in the wind turbine and leads 

consequently to creating most of the power in this region. 

6.4 Comparison Analysis Between BEM and CFD 

 In this section, a comparison is carried out between 

different values of the tip speed ratio of the micro wind 

turbine performance. The optimized curves for both 

methods show high values of power coefficient compared 

to the baseline configuration over the entire TSR range. 

The results between CFD and Qblade show a good 

agreement over operating range especially at design TSR  
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Fig. 17 Comparison the velocity streamlines between the initial and optimal blade at design TSR 
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Table 6 performance benefits of all TSR values 

Tip speed ratio 
Diff Cp in CFD between two wind turbine 

types 

Diff Cp in Qblade between two wind turbine 

types 

3 14.65% 17.17% 

2.5 29.7% 32.41% 

3.5 9.51% 27.2% 

4 19.44% 41% 

2 32% 56% 
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Fig. 18 limiting streamlines with static pressure 

contour of optimal and initial rotor at different tip 

speed ratio 

 

and its neighboring except for the noticeable divergences, 

in the initial configuration between CFD and Qblade  

in the post-design region TSR>3 and in the optimized  
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Fig. 19 Comparison between BEM and CFD 
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Fig. 20 Static torque at different wind speed for both 

rotors 

 

configuration between CFD and Qblade in the predesign 

region TSR<2.5. Table 6 shows the differences of the 

performance benefits between the two types of rotors at all 

TSRs. The reasons for these differences, are summarized 

in the following point; at high TSRs, where the rotational 

effects are considered in the CFD tool, the performance is 

increased compared to the Qblade results. On other hand, 

low TSRs, lead to the high angle of attack and 

consequently the separation of the boundary layer which 

deteriorate the wind turbine performance Fig. 19. 

6.5 Torque Static Comparison  

 In this section, after selecting the design TSR=3 with 

five different speeds v=3,4,5,6,7 and 8 m/s, the static 

torque was examined using CFD tool for both initial and 
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optimal rotor, as shown in Fig. 20. In fact, the static torque 

rises with the increasing in wind speed for each rotor and 

the optimal rotor achieves highest torque values at all wind 

speeds. In particular, at the lowest speed v=3m/s, an 

increase of 37% was attained in the static torque for the 

optimal rotor compared to the initial one and this explains 

the enhancement in the starting-up ability during of the 

optimized turbine operability. 

5. CONCLUSION 

In this work the response surface method was used to 

optimize the aerodynamic geometry of the horizontal axis 

wind turbine blade based on the SG 6043 profile. In the 

first step, the BEM approach was utilized to give the 

preliminary design and analysis of the baseline 

configuration and was adopted as an initial geometry. This 

latter was identified by the chord length and twist angle 

distribution in the optimization process.                    A 

modelling geometry via both fourth degree and quadratic 

polynomial was applied to well-fitting curves over the full 

span for the chord length and twist angle distribution to 

minimize the sample points in the design of the 

experiment step. The non-parametric regression technique 

was added to the optimization process to build a high-

quality response surface and the multi-objective genetic 

algorithm was implemented to identify the optimal 

objective function value. After a long time of calculation, 

the optimal blade was identified, and the results show 

through a comparison between the initial and optimized 

blade using the CFD analyzer and Qblade software that the 

performance of wind turbine increases by almost 14.65% 

and 17.17% at design TSR, respectively. The analysis of 

the flow topology near both blade sides illustrates that the 

benefit of the aerodynamic optimization revealed in the 

control of the detachment of the boundary layer especially 

at the trailing edge of the suction side. The adopted 

optimization process led to improve the starting 

operability in the lowest wind speed of V=3 m/s with 

almost 37%. 
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