Assessing Energy Loss and Entropy Production in a Centrifugal Pump with Various Impeller Blade Trailing Edges

Document Type : Regular Article

Authors

1 School of Energy and Power Engineering, Xihua University, Chengdu 610039, China

2 Shanghai Shangyuan Pump Manufacturing Co., Ltd, Shanghai 201508, China

3 National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China

4 College of Mechanical Engineering, Nantong University, Nantong 226019, China

10.47176/jafm.18.2.2488

Abstract

The centrifugal pump holds significant prominence as a widely adopted power machinery in mechanical industries. This study aims to uncover the influence of blade trailing edges on the energy performance of centrifugal pumps. Sixteen types of blade trailing edge models, including Bezier trailing edges, rounded pressure side, cut suction side, and original blade trailing edges, are examined both numerically and experimentally. Entropy production power and energy loss for each domain with different trailing edge models are computed using entropy production theory and the pressure drop method, respectively. The correlation between them and the interaction of energy loss in various domains are determined through Spearman correlation analysis. Furthermore, the energy loss and efficiency of the centrifugal pump are decomposed and explored. Finally, the impact of different trailing edges on each component of shaft power is analyzed. The study findings indicate that increasing the radius of the trailing edge leads to higher head, while a thinner trailing edge enhances efficiency. Consistent trends are observed in entropy production and energy loss across different blade trailing edges. Modifying the impeller trailing edge significantly affects not only the impeller but also the cavity, diffuser, and outlet chamber, with minimal impact on the inlet chamber. Thinning the blade trailing edge can decrease energy loss and entropy production. Proper design of the blade trailing edge can effectively reduce the pressure pulsation near the impeller outlet in the stator. This study serves as a valuable reference for the design and research of centrifugal pump blade trailing edges.

Keywords

Main Subjects


Abramian, M., & Howard, J. (1994). Experimental investigation of the steady and unsteady relative flow in a model centrifugal impeller passage. ASME Journal of Turbomachinery, 116(2), 269-279. https://doi.org/10.1115/1.2928361
Al-Qutub, A. M., Khalifa, A. E., & Al-Sulaiman, F. A. (2012). Exploring the Effect of V-Shaped cut at blade exit of a double volute centrifugal pump. Journal of Pressure Vessel Technology, 134(2). https://doi.org/10.1115/1.4004798
Bourgoyne, D. A., Ceccio, S. L., & Dowling, D. R. (2005). Vortex shedding from a hydrofoil at high Reynolds number. Journal of Fluid Mechanics, 531, 293-324. https://doi.org/10.1017/s0022112005004076
Cui, B., Li, W., & Zhang, C. (2020a). Effect of blade trailing edge cutting angle on unstable flow and vibration in a centrifugal pump. Journal of Fluids Engineering-Transactions of the Asme, 142(10), 101203. https://doi.org/10.1115/1.4047363
Cui, B., Zhang, C., Zhang, Y., & Zhu, Z. (2020b). Influence of cutting angle of blade trailing edge on unsteady flow in a centrifugal pump under off-design conditions. Applied Sciences, 10(2). https://doi.org/10.3390/app10020580
Do, T., Chen, L., & Tu, J. (2010). Numerical study of turbulent trailing-edge flows with base cavity effects using URANS. Journal of Fluids and Structures, 26(7-8), 1155-1173. https://doi.org/10.1016/j.jfluidstructs.2010.07.006
El-Emam, M. A., Zhou, L., Yasser, E., Bai, L., & Shi, W. (2022). Computational methods of erosion wear in centrifugal pump: a state-of-the-art review. Archives of Computational Methods in Engineering, 29(6), 3789-3814. https://doi.org/10.1007/s11831-022-09714-x
Farge, T. Z., Johnson, M. W. J. I. J. O. H., & Flow, F. (1992). Effect of flow rate on loss mechanisms in a backswept centrifugal impeller. International Journal of Heat Fluid Flow, 13(2), 189-196. https://doi.org/10.1016/0142-727X(92)90027-7
Gao, B., Zhang, N., Li, Z., Ni, D., & Yang, M. (2016). Influence of the blade trailing edge profile on the performance and unsteady pressure pulsations in a low specific speed centrifugal pump. Journal of Fluids Engineering, 138(5). https://doi.org/10.1115/1.4031911
Gülich, J. F. (2020). Centrifugal pumps (4 ed.). Springer Cham. https://doi.org/10.1007/978-3-030-14788-4
Han, Y., Zhou, L., Bai, L., Shi, W., & Agarwal, R. J. P. O. F. (2021). Comparison and validation of various turbulence models for U-bend flow with a magnetic resonance velocimetry experiment. Physics of Fluids, 33(12), 125117. https://doi.org/10.1063/5.0073910
Herwig, H., & Kock, F. (2006). Direct and indirect methods of calculating entropy generation rates in turbulent convective heat transfer problems. Heat and Mass Transfer, 43(3), 207-215. https://doi.org/10.1007/s00231-006-0086-x
Huang, B., Zeng, G., Qian, B., Wu, P., Shi, P., & Qian, D. (2021). Pressure fluctuation reduction of a centrifugal pump by blade trailing edge modification. Processes, 9(8). https://doi.org/10.3390/pr9081408
Ji, L., Li, W., Shi, W., Tian, F., & Agarwal, R. (2020). Diagnosis of internal energy characteristics of mixed-flow pump within stall region based on entropy production analysis model. International Communications in Heat and Mass Transfer, 117. https://doi.org/10.1016/j.icheatmasstransfer.2020.104784
Ji, L., Li, W., Shi, W., Tian, F., & Agarwal, R. (2021). Effect of blade thickness on rotating stall of mixed-flow pump using entropy generation analysis. Energy, 236. https://doi.org/10.1016/j.energy.2021.121381
Keller, J., Blanco, E., Barrio, R., & Parrondo, J. (2014). PIV measurements of the unsteady flow structures in a volute centrifugal pump at a high flow rate. Experiments in Fluids, 55(10). https://doi.org/10.1007/s00348-014-1820-7
Kikuyama, K., Murakami, M., Asakura, E., Osuka, I., & Liu, J. (1985). Velocity distributions in the impeller passages of centrifugal pumps-effects of outlet edge shape of the impeller blades on the pump performance. Bulletin of JSME, 28, 1963-1969. https://doi.org/10.1299/jsme1958.28.1963
Kock, F., & Herwig, H. (2004). Local entropy production in turbulent shear flows: a high-Reynolds number model with wall functions. International Journal of Heat and Mass Transfer, 47(10-11), 2205-2215. https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.025
Kock, F., & Herwig, H. (2005). Entropy production calculation for turbulent shear flows and their implementation in cfd codes. International Journal of Heat and Fluid Flow, 26(4), 672-680. https://doi.org/10.1016/j.ijheatfluidflow.2005.03.005
Li, D., Wang, H., Qin, Y., Han, L., Wei, X., & Qin, D. (2017). Entropy production analysis of hysteresis characteristic of a pump-turbine model. Energy Conversion and Management, 149, 175-191. https://doi.org/10.1016/j.enconman.2017.07.024
Li, H., Chen, Y., Yang, Y., Wang, S., Bai, L., Zhou, L., & Engineering. (2023). CFD simulation of centrifugal pump with different impeller blade trailing edges. Journal of Marine Science and Engineering, 11(2), 402. https://doi.org/10.3390/jmse11020402
Li, H., Han, Y., Shi, W., Tiganik, T., & Zhou, L. (2022). Automatic optimization of centrifugal pump based on adaptive single-objective algorithm and computational fluid dynamics. Engineering Applications of Computational Fluid Mechanics, 16(1), 2221-2241. https://doi.org/10.1080/19942060.2022.2143901
Lin, Y., Li, X., Li, B., Jia, X., & Zhu, Z. (2021). Influence of impeller sinusoidal tubercle trailing-edge on pressure pulsation in a centrifugal pump at nominal flow rate. Journal of Fluids Engineering, 143(9). https://doi.org/10.1115/1.4050640
Lin, Y., Li, X., Zhu, Z., Wang, X., Lin, T., & Cao, H. (2022). An energy consumption improvement method for centrifugal pump based on bionic optimization of blade trailing edge. Energy, 246, 123323. https://doi.org/10.1016/j.energy.2022.123323
Litfin, O., Delgado, A., Haddad, K., Klein, H., & Asme. (2017, Jul 30-Aug 03). Numerical and experimental investigation of trailing edge modifications of centrifugal wastewater pump impellers. ASME Fluids Engineering Division Summer Meeting, Waikoloa, HI. https://doi.org/10.1115/FEDSM2017-69123
Mansour, M., Thévenin, D., & Parikh, T. (2020). Influence of the shape of the impeller blade trailing edge on single and two-phase airwater flows in a centrifugal pump. Proceedings of the 36th International Pump Users Symposium. https://hdl.handle.net/1969.1/196803
Meng, C., Jiang, X. S., Wang, J., & Wei, X. M. (2019). The complex network model for industrial data based on Spearman correlation coefficient. 2019 International Conference on Internet of Things (Ithings) and Ieee Green Computing and Communications (Greencom) and Ieee Cyber, Physical and Social Computing (Cpscom) and Ieee Smart Data (Smartdata). https://doi.org/10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00028
Mosallem, M. M. (2008). Numerical and experimental investigation of beveled trailing edge flow fields. Journal of Hydrodynamics, 20(3), 273-279. https://doi.org/10.1016/S1001-6058(08)60057-8
Qian, B., Wu, P., Huang, B., Zhang, K., Li, S., & Wu, D. (2020). Optimization of a centrifugal impeller on blade thickness distribution to reduce hydro-induced vibration. Journal of Fluids Engineering, 142(2). https://doi.org/10.1115/1.4044965
Wang, C., Shi, W., Wang, X., Jiang, X., Yang, Y., Li, W., & Zhou, L. (2017). Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics. Applied Energy, 187, 10-26. https://doi.org/10.1016/j.apenergy.2016.11.046
Wang, K., Ju, Y., & Zhang, C. (2019). A Quantitative evaluation method for impeller-volute tongue interaction and application to squirrel cage fan with bionic volute tongue. Journal of Fluids Engineering, 141(8). https://doi.org/10.1115/1.4042372
Wu, C., Li, Q., Zheng, F., Wu, P., Yang, S., Ye, H., Huang, B., & Wu, D. (2021a). Improve of unsteady pressure pulsation based on jet–wake suppression for a low specific centrifugal pump. Journal of Fluids Engineering, 143(11). https://doi.org/10.1115/1.4051402
Wu, C., Pu, K., Li, C., Wu, P., Huang, B., & Wu, D. (2022). Blade redesign based on secondary flow suppression to improve energy efficiency of a centrifugal pump. Energy, 246. https://doi.org/10.1016/j.energy.2022.123394
Wu, C., Zhang, W., Wu, P., Yi, J., Ye, H., Huang, B., & Wu, D. (2021b). Effects of blade pressure side modification on unsteady pressure pulsation and flow structures in a centrifugal pump. Journal of Fluids Engineering, 143(11). https://doi.org/10.1115/1.4051404
Wu, D., Yan, P., Chen, X., Wu, P., & Yang, S. (2015). Effect of Trailing-edge modification of a mixed-flow pump. Journal of Fluids Engineering, 137(10). https://doi.org/10.1115/1.4030488
Zhang, F., Appiah, D., Hong, F., Zhang, J., Yuan, S., Adu-Poku, K. A., & Wei, X. (2020). Energy loss evaluation in a side channel pump under different wrapping angles using entropy production method. International Communications in Heat and Mass Transfer, 113. https://doi.org/10.1016/j.icheatmasstransfer.2020.104526
Zhang, N., Liu, X., Gao, B., Wang, X., & Xia, B. (2019). Effects of modifying the blade trailing edge profile on unsteady pressure pulsations and flow structures in a centrifugal pump. International Journal of Heat and Fluid Flow, 75, 227-238. https://doi.org/10.1016/j.ijheatfluidflow.2019.01.009
Zhao Z, Zhou L, Bai L, Wang B & Agarwal R. (2024) Recent advances and perspectives of CFD–DEM simulation in fluidized bed. Archives of Computational Methods in Engineering, 31, 871-918. https://doi.org/10.1007/s11831-023-10001-6
Zhou, L., Hang, J., Bai, L., Krzemianowski, Z., El-Emam, M. A., Yasser, E., & Agarwal, R. (2022). Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review. Applied Energy, 318. https://doi.org/10.1016/j.apenergy.2022.119211
Zobeiri, A., Ausoni, P., Avellan, F., & Farhat, M. (2012). How oblique trailing edge of a hydrofoil reduces the vortex-induced vibration. Journal of Fluids and Structures, 32, 78-89. https://doi.org/10.1016/j.jfluidstructs.2011.12.003
Volume 18, Issue 2 - Serial Number 94
February 2025
Pages 518-534
  • Received: 03 December 2023
  • Revised: 26 August 2024
  • Accepted: 01 September 2024
  • Available online: 04 December 2024