Bricteux, L., Duponcheel, M., & Winckelmans, G. (2009). A multiscale subgrid model for both free vortex flows and wall-bounded flows.
Physics of Fluids,
21(10).
https://doi.org/10.1063/1.3241991
Chew, J. W., & Rogers, R. H. (1988). An integral method for the calculation of turbulent forced convection in a rotating cavity with radial outflow.
International Journal of Heat and Fluid Flow,
9(1), 37-48.
https://doi.org/10.1016/0142-727x(88)90028-8
Chew, J. W., Farthing, P. R., Owen, J. M., & Stratford, B. (1989). The use of fins to reduce the pressure drop in a rotating cavity with a radial inflow.
Journal of Turbomachinery,
111, 349-356.
https://doi.org/10.1115/1.3262279
Da Soghe, R., Bianchini, C., & D'Errico, J. (2018). Numerical characterization of flow and heat transfer in preswirl systems.
Journal of Engineering for Gas Turbines and Power,
140(7), 071901.
https://doi.org/10.1115/GT2017-64503
Farthing, P. R., Chew, J. W., & Owen, J. M. (1991). The use of de-swirl nozzles to reduce the pressure drop in a rotating cavity with a radial inflow.
Journal of Turbomachinery,
113, 106-114.
https://doi.org/10.1115/1.2927727
Firouzian, M., Owen, J. M., Pincombe, J. R., & Rogers, R. H. (1986). Flow and heat transfer in a rotating cylindrical cavity with a radial inflow of fluid: Part 2: Velocity, pressure and heat transfer measurements.
International Journal of Heat and Fluid Flow, 7(1), 21-27.
https://doi.org/10.1016/0142-727X(86)90037-8
Ghasemi, M. H., Hoseinzadeh, S., & Memon, S. (2022). A dual-phase-lag (DPL) transient non-Fourier heat transfer analysis of functional graded cylindrical material under axial heat flux.
International Communications in Heat and Mass Transfer,
131, 105858.
https://doi.org/10.1016/j.icheatmasstransfer.2021.105858
Guo, Z. Y., Tao, W. Q., & Shah, R. (2005). The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer.
International Journal of Heat and Mass Transfer,
48(9), 1797-1807.
https://doi.org/10.1016/j.ijheatmasstransfer.2004.11.007
Kármán, T. V. (1921). Über laminare und turbulente Reibung.
ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik,
1(4), 233-252.
https://doi.org/10.1002/zamm.19210010401
Kong, X., Huang, T., Liu, Y., Chen, H., & Lu, H. (2022). Effects of pre-swirl radius on cooling performance of a rotor-stator pre-swirl system in gas turbine engines.
Case Studies in Thermal Engineering,
37, 102250.
https://doi.org/10.1016/j.csite.2022.102250
Lewis, P., Wilson, M., Lock, G. D., & Owen, J. M. (2009). Effect of radial location of nozzles on performance of pre-swirl systems: a computational and theoretical study.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
223(2), 179-190.
https://doi.org/10.1243/09576509JPE689
Lin, A., Liu, G., Yu, X., Chang, R., & Feng, Q. (2022). Comprehensive investigations on fluid flow and heat transfer characteristics of a high-speed rotating turbine disk cavity system of aero-engine.
International Communications in Heat and Mass Transfer,
136, 106170.
https://doi.org/10.1016/j.icheatmasstransfer.2022.106170
Liu, G., Gong, W., Wu, H., & Lin, A. (2021). Experimental and CFD analysis on the pressure ratio and entropy increment in a cover-plate pre-swirl system of gas turbine engine.
Engineering Applications of Computational Fluid Mechanics,
15(1), 476-489.
https://doi.org/10.1080/19942060.2021.1884600
Ma, A., Wu, Q., Zhou, T., & Hu, R. (2022). Effect of inlet flow ratio on heat transfer characteristics of a novel twin-web turbine disk with receiving holes.
Case Studies in Thermal Engineering,
34, 101990.
https://doi.org/10.1016/j.csite.2022.101990
Ostadhossein, R., & Hoseinzadeh, S. (2024). Developing computational methods of heat flow using bioheat equation enhancing skin thermal modeling efficiency.
International Journal of Numerical Methods for Heat & Fluid Flow,
34(3), 1380-1398.
https://doi.org/10.1108/HFF-06-2023-0355
Owen, J. M., & Pincombe, J. R. (1980). Velocity measurements inside a rotating cylindrical cavity with a radial outflow of fluid.
Journal of Fluid Mechanics,
99(1), 111-127.
https://doi.org/10.1017/S0022112080000547
Shen, W., Wang, S., & Hou, X. (2023). Coupling mechanism of pressure and temperature in a co-rotating cavity with radial flow.
Thermal Science and Engineering Progress,
43, 101940.
https://doi.org/10.1016/j.tsep.2023.101940
Tang, H., Deveney, T., Shardlow, T., & Lock, G. D. (2022). Use of Bayesian statistics to calculate transient heat fluxes on compressor disks.
Physics of Fluids,
34(5), 56108.
https://doi.org/10.1063/5.0091371
Unnikrishnan, U., & Yang, V. (2022). A review of cooling technologies for high temperature rotating components in gas turbine.
Propulsion and Power Research,
11(3), 293-310.
https://doi.org/10.1016/j.jppr.2022.07.001
Wei, S., Mao, J., Yan, J., Han, X., Tu, Z., & Tian, R. (2020). Experimental study on a hybrid vortex reducer system in reducing the pressure drop in a rotating cavity with radial inflow.
Experimental Thermal and Fluid Science,
110, 109942.
https://doi.org/10.1016/j.expthermflusci.2019.109942
Wei, S., Yan, J., Mao, J., Han, X., & Tu, Z. (2019). A mathematical model for predicting the pressure drop in a rotating cavity with a tubed vortex reducer.
Engineering Applications of Computational Fluid Mechanics,
13(1), 664-682.
https://doi.org/10.1080/19942060.2019.1633411
Zhang, F., Wang, X., & Li, J. (2016a). Numerical investigation on the flow and heat transfer characteristics in radial pre-swirl system with different fillet radius at the junction of inlet cavity and nozzle.
Applied Thermal Engineering,
106, 1165-1175.
https://doi.org/10.1016/j.applthermaleng.2016.06.117
Zhang, F., Wang, X., & Li, J. (2016b). Numerical investigation of flow and heat transfer characteristics in radial pre-swirl system with different pre-swirl nozzle angles.
International Journal of Heat and Mass Transfer,
95, 984-995.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.010