Effect of Receiver Holes on Flow and Heat Transfer Characteristics in A Radial Pre-swirl System: A LES Study

Document Type : Regular Article

Authors

1 Faculty of Aircraft, Rocket Engines and Power Plants, Moscow Aviation Institute, Moscow 125080, Russia

2 Faculty of Aerospace, Moscow Aviation Institute, Moscow 125080, Russia

3 Faculty of Aircraft Engineering, Moscow Aviation Institute, Moscow 125080, Russia

10.47176/jafm.18.3.2865

Abstract

As a necessary component of a turboshaft engine, optimizing components in the radial pre-swirl system is critical for improving turbine performance. The aim of this study was to investigate the impact of receiver holes on the flow and heat transfer characteristics of various components in the pre-swirl system. Large-eddy simulations were used to demonstrate the phenomenon that the different receiver hole tangential angles have a significant influence on the performance of the radial pre-swirl system. In addition, a mathematical model was developed to predict the relative total pressure and temperature inside the co-rotating cavity. It is observed that the relative total pressure of computational model with receiver hole tangential angle equals to 15° is 21.88% and 18.54% larger than that of the computational model with receiver hole tangential angles equals to 0° and 7.5°as a result of the increase in swirl ratio. A larger swirl ratio resulted in a stronger centrifugal supercharging effect and jet acceleration effect. Furthermore, the Nusselt number and the field synergy angle exhibited an upward and downward trend, respectively. Subsequently, an investigation of unsteady characteristics designed to reveal the vortex state inside the co-rotating cavity was carried out. The mathematical model’s prediction result matched the LES result closely, demonstrating its practical significance.

Keywords

Main Subjects


Bricteux, L., Duponcheel, M., & Winckelmans, G. (2009). A multiscale subgrid model for both free vortex flows and wall-bounded flows. Physics of Fluids, 21(10). https://doi.org/10.1063/1.3241991
Cao, N., Luo, X., & Tang, H. (2022). A Bayesian model to solve a two-dimensional inverse heat transfer problem of gas turbine discs. Applied Thermal Engineering214, 118762. https://doi.org/10.1016/j.applthermaleng.2022.118762
Chew, J. W., & Rogers, R. H. (1988). An integral method for the calculation of turbulent forced convection in a rotating cavity with radial outflow. International Journal of Heat and Fluid Flow9(1), 37-48. https://doi.org/10.1016/0142-727x(88)90028-8
Chew, J. W., Farthing, P. R., Owen, J. M., & Stratford, B. (1989). The use of fins to reduce the pressure drop in a rotating cavity with a radial inflow. Journal of Turbomachinery, 111, 349-356. https://doi.org/10.1115/1.3262279
Da Soghe, R., Bianchini, C., & D'Errico, J. (2018). Numerical characterization of flow and heat transfer in preswirl systems. Journal of Engineering for Gas Turbines and Power140(7), 071901. https://doi.org/10.1115/GT2017-64503
Dou, H. S. (2022). Origin of turbulence. Energy Gradient Theory. Singapore: Springer. https://doi.org/10.1007/978-981-19-0087-7
Farthing, P. R., & Owen, J. M. (1991). De-swirled radial inflow in a rotating cavity. International Journal of Heat and Fluid Flow12(1), 63-70. https://doi.org/10.1016/0142-727X(91)90009-K
Farthing, P. R., Chew, J. W., & Owen, J. M. (1991). The use of de-swirl nozzles to reduce the pressure drop in a rotating cavity with a radial inflow. Journal of Turbomachinery, 113, 106-114. https://doi.org/10.1115/1.2927727
Firouzian, M., Owen, J. M., Pincombe, J. R., & Rogers, R. H. (1986). Flow and heat transfer in a rotating cylindrical cavity with a radial inflow of fluid: Part 2: Velocity, pressure and heat transfer measurements. International Journal of Heat and Fluid Flow, 7(1), 21-27. https://doi.org/10.1016/0142-727X(86)90037-8
Ghasemi, M. H., Hoseinzadeh, S., & Memon, S. (2022). A dual-phase-lag (DPL) transient non-Fourier heat transfer analysis of functional graded cylindrical material under axial heat flux. International Communications in Heat and Mass Transfer, 131, 105858. https://doi.org/10.1016/j.icheatmasstransfer.2021.105858
Guo, Z. Y., Li, D. Y., & Wang, B. X. (1998). A novel concept for convective heat transfer enhancement. International Journal of Heat and Mass Transfer41(14), 2221-2225. https://doi.org/10.1016/s0017-9310(97)00272-x
Guo, Z. Y., Tao, W. Q., & Shah, R. (2005). The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer. International Journal of Heat and Mass Transfer48(9), 1797-1807. https://doi.org/10.1016/j.ijheatmasstransfer.2004.11.007
Hide, R. (1968). On source-sink flows in a rotating fluid. Journal of Fluid Mechanics32(4), 737-764. https://doi.org/10.1017/s002211206800100x
Jeong, J., & Hussain, F. (1995). On the identification of a vortex. Journal of Fluid Mechanics285, 69-94. https://doi.org/10.1017/S0022112095000462
Kármán, T. V. (1921). Über laminare und turbulente Reibung. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik1(4), 233-252. https://doi.org/10.1002/zamm.19210010401
Kong, X., Huang, T., Liu, Y., Chen, H., & Lu, H. (2022). Effects of pre-swirl radius on cooling performance of a rotor-stator pre-swirl system in gas turbine engines. Case Studies in Thermal Engineering37, 102250. https://doi.org/10.1016/j.csite.2022.102250
Lewis, P., Wilson, M., Lock, G. D., & Owen, J. M. (2009). Effect of radial location of nozzles on performance of pre-swirl systems: a computational and theoretical study. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy223(2), 179-190. https://doi.org/10.1243/09576509JPE689
Liao, G., Wang, X., & Li, J. (2014). Numerical investigation of the pre-swirl rotor–stator system of the first stage in gas turbine. Applied Thermal Engineering73(1), 940-952. https://doi.org/10.1016/j.applthermaleng.2014.08.054
Liao, G., Wang, X., Li, J., & Zhou, J. (2015). Numerical investigation on the flow and heat transfer in a rotor-stator disc cavity. Applied Thermal Engineering87, 10-23. https://doi.org/10.1016/j.applthermaleng.2015.05.002
Lin, A., Liu, G., Yu, X., Chang, R., & Feng, Q. (2022). Comprehensive investigations on fluid flow and heat transfer characteristics of a high-speed rotating turbine disk cavity system of aero-engine. International Communications in Heat and Mass Transfer136, 106170. https://doi.org/10.1016/j.icheatmasstransfer.2022.106170
Liu, G., Gong, W., Wu, H., & Lin, A. (2021). Experimental and CFD analysis on the pressure ratio and entropy increment in a cover-plate pre-swirl system of gas turbine engine. Engineering Applications of Computational Fluid Mechanics15(1), 476-489. https://doi.org/10.1080/19942060.2021.1884600
Long, C. A. (1994). Disk heat transfer in a rotating cavity with an axial throughflow of cooling air. International Journal of Heat and Fluid Flow15(4), 307-316. https://doi.org/10.1016/0142-727X(94)90016-7
Ma, A., Liu, F., Zhou, T., & Hu, R. (2021). Numerical investigation on heat transfer characteristics of twin-web turbine disk-cavity system. Applied Thermal Engineering, 184, 116268. https://doi.org/10.1016/j.applthermaleng.2020.116268
Ma, A., Wu, Q., Zhou, T., & Hu, R. (2022). Effect of inlet flow ratio on heat transfer characteristics of a novel twin-web turbine disk with receiving holes. Case Studies in Thermal Engineering34, 101990. https://doi.org/10.1016/j.csite.2022.101990
Ostadhossein, R., & Hoseinzadeh, S. (2024). Developing computational methods of heat flow using bioheat equation enhancing skin thermal modeling efficiency. International Journal of Numerical Methods for Heat & Fluid Flow, 34(3), 1380-1398. https://doi.org/10.1108/HFF-06-2023-0355
Owen, J. M., & Pincombe, J. R. (1980). Velocity measurements inside a rotating cylindrical cavity with a radial outflow of fluid. Journal of Fluid Mechanics99(1), 111-127. https://doi.org/10.1017/S0022112080000547
Owen, J. M., Pincombe, J. R., & Rogers, R. H. (1985). Source–sink flow inside a rotating cylindrical cavity. Journal of Fluid Mechanics155, 233-265. https://doi.org/10.1017/S0022112085001793
Pope, S. B. (2000). Turbulent flows. Measurement Science and Technology, 12(11), 2020-2021. https://doi.org/10.1017/CBO9780511840531
Shen, W., & Wang, S. (2022). Large eddy simulation of turbulent flow and heat transfer in a turbine disc cavity with impellers. International Communications in Heat and Mass Transfer139, 106463. https://doi.org/10.1016/j.icheatmasstransfer.2022.106463
Shen, W., Wang, S., & Hou, X. (2023). Coupling mechanism of pressure and temperature in a co-rotating cavity with radial flow. Thermal Science and Engineering Progress43, 101940. https://doi.org/10.1016/j.tsep.2023.101940
Tang, H., Deveney, T., Shardlow, T., & Lock, G. D. (2022). Use of Bayesian statistics to calculate transient heat fluxes on compressor disks. Physics of Fluids, 34(5), 56108. https://doi.org/10.1063/5.0091371
Unnikrishnan, U., & Yang, V. (2022). A review of cooling technologies for high temperature rotating components in gas turbine. Propulsion and Power Research, 11(3), 293-310. https://doi.org/10.1016/j.jppr.2022.07.001
Vreman, B., Geurts, B., & Kuerten, H. (1997). Large-eddy simulation of the turbulent mixing layer. Journal of Fluid Mechanics339, 357-390. https://doi.org/10.1017/S0022112097005429
Wei, S., Mao, J., Yan, J., Han, X., Tu, Z., & Tian, R. (2020). Experimental study on a hybrid vortex reducer system in reducing the pressure drop in a rotating cavity with radial inflow. Experimental Thermal and Fluid Science110, 109942. https://doi.org/10.1016/j.expthermflusci.2019.109942
Wei, S., Yan, J., Mao, J., Han, X., & Tu, Z. (2019). A mathematical model for predicting the pressure drop in a rotating cavity with a tubed vortex reducer. Engineering Applications of Computational Fluid Mechanics, 13(1), 664-682. https://doi.org/10.1080/19942060.2019.1633411
Zhang, F., Wang, X., & Li, J. (2016a). Numerical investigation on the flow and heat transfer characteristics in radial pre-swirl system with different fillet radius at the junction of inlet cavity and nozzle. Applied Thermal Engineering, 106, 1165-1175. https://doi.org/10.1016/j.applthermaleng.2016.06.117
Zhang, F., Wang, X., & Li, J. (2016b). Numerical investigation of flow and heat transfer characteristics in radial pre-swirl system with different pre-swirl nozzle angles. International Journal of Heat and Mass Transfer, 95, 984-995. https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.010