Bhattacharjee, R. C. (2003). Optimal design of a settling chamber-an air pollution control device.
WIT Transactions on Ecology and the Environment,
66. 1-10.
https://doi.org/ 10.2495/AIR030521
Chuah, T. G., Gimbun, J., & Choong, T. S. (2006). A CFD study of the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics.
Powder Technology,
162(2), 126-132.
https://doi.org/10.1016/j.powtec.2005.12.010
Fatahian, H., Fatahian, E., & Nimvari, M. E. (2018). Improving efficiency of conventional and square cyclones using different configurations of the laminarizer.
Powder Technology,
339, 232-243.
https://doi.org/10.1016/j.powtec.2018.08.038
Feather, G. A., & Chen, B. T. (2003). Design and use of a settling chamber for sampler evaluation under calm-air conditions.
Aerosol Science & Technology,
37(3), 261-270.
https://doi.org/10.1080/02786820300946
Flagan, R. C., & Seinfeld, J. H. (1988). Removal of particles from gas streams. Fundamentals of Air Pollution Engineering. Prentice-Hall, Inc., Englewood Cliffs, NJ.
Fluent, Inc., Fluent 6.1.22 Users' Guide. (2004).
Griffiths, W. D., & Boysan, F. (1996). Computational fluid dynamics (CFD) and empirical modelling of the performance of a number of cyclone samplers.
Journal of Aerosol Science,
27(2), 281-304.
https://doi.org/10.1016/0021-8502(95)00549-8
Houben, J. J. H., Weiss, C., & Brunnmair, E. (2016). CFD simulations of pressure drop and velocity field in a cyclone separator with central vortex stabilization rod.
Journal of Applied Fluid Mechanics, 9(1), 487-499.
https://doi.org/10.18869/ACADPUB.JAFM.68.224.23934
Launder, B. E., & Shima, N. (1989). Second-moment closure for the near-wall sublayer-development and application.
AIAA Journal,
27(10), 1319-1325.
https://doi.org/10.2514/3.10267
Liu, X., Zhang, Y., Wu, Q., Zhang, M., Liu, F., & Guo, Y. (2019). Study on the key structure parameters of a gravity settling chamber based on a flow field simulation.
Engineering Applications of Computational Fluid Mechanics,
13(1), 377-395.
https://doi.org/10.1080/19942060.2019.1595729
Nasiri, A., & Abdolzadeh, M. (2019). Effect of baffle arrangement and inlet air velocity on particulate removal efficiency of a gravitational settling chamber in a coke-making plant.
International Journal of Coal Preparation and Utilization 39و 347-372.
https://doi.org/10.1080/19392699.2017.1333114
Nieto, P. G., del Coz Díaz, J. J., Castro-Fresno, D., & Muñoz, F. B. (2010). Numerical simulation of the performance of a snow fence with airfoil snow plates by FVM.
Journal of Computational and Applied Mathematics,
234(4),1200-1210.
https://doi.org/10.1016/j.cam.2009.07.048
Patro, B., Kupireddi, K. K., & Devanuri, J. K. (2023). Heat transfer and pressure drop studies of vertical gas-particle flow using a variable gas property two-fluid model.
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering,
47(3),893-903.
https://doi.org/10.1007/s40997-022-00561-6
Rajmistry, S., Ganguli, S., Chandra, P., Karmakar, M. K., & Chatterjee, P. (2017). Numerical analysis of gas-solid behavior in a cyclone separator for circulating fluidized bed system.
Journal of Applied Fluid Mechanics, 10(4),
1167-1176.
https://doi.org/10.18869/acadpub.jafm.73.241.26951
Roache, P. J. (1994). Perspective: a method for uniform reporting of grid refinement studies.
Journal of Fluids Engineering, 116, 405-413.
https://doi.org/10.1115/1.2910291
Romblad, J., Greiner, M., Guissart, A., & Würz, W. (2022). Characterization of low levels of turbulence generated by grids in the settling chamber of a laminar wind tunnel.
Experiments in Fluids,
63(4), 65.
https://doi.org/10.1007/s00348-022-03418-5
Safikhani, H., Akhavan-Behabadi, M. A., Nariman-Zadeh, N., & Abadi, M. M. (2011a). Modeling and multi-objective optimization of square cyclones using CFD and neural networks.
Chemical Engineering Research and Design,
89(3), 301-309.
https://doi.org/10.1016/j.cherd.2010.07.004
Sahmel, J., Avens, H. J., Scott, P. K., Unice, K., Burns, A., Barlow, C. A., & Paustenbach, D. J. (2015). Measured removal rates of chrysotile asbestos fibers from air and comparison with theoretical estimates based on gravitational settling and dilution ventilation.
Inhalation Toxicology,
27(14), 787-801.
https://doi.org/10.3109/08958378.2015.1110216
Sinnott, R. (2005). Chemical engineering design: chemical engineering. Volume 6. Elsevier.
Slack, M. D., Prasad, R. O., Bakker, A., & Boysan, F. (2000). Advances in cyclone modelling using unstructured grids.
Chemical Engineering Research and Design,
8(78), 1098-1104.
https://doi.org/10.1205/026387600528373
Venkatesh, S., & Sakthivel, M. (2017). Numerical investigation and optimization for performance analysis in Venturi inlet cyclone separator.
Desalination and Water Treatment,
90, 168-179.
https://doi.org/10.5004/dwt.2017.21444
Venkatesh, S., Sivapirakasam, S. P., Sakthivel, M., Krishnaraj, R., & Leta, T. J. (2021). Investigation on hydrocyclone for increasing the performance by modification of geometrical parameters through cfd approach.
Desalin. Water Treat,
244, 157-166.
https://doi.org/10.5004/dwt.2021.27944
Wasilewski, M., Brar, L. S., & Ligus, G. (2020). Experimental and numerical investigation on the performance of square cyclones with different vortex finder configurations.
Separation and Purification Technology,
239,116588.
https://doi.org/10.1016/j.seppur.2020.116588
Zhao, B., Su, Y., & Zhang, J. (2006). Simulation of gas flow pattern and separation efficiency in cyclone with conventional single and spiral double inlet configuration.
Chemical Engineering Research and Design,
84(12),1158-1165.
https://doi.org/10.1205/cherd06040